Minggu, 20 Juni 2010

Mesin Carnot

Mesin Carnot
Diagram asli mesin Carnot, 1824

Mesin Carnot adalah mesin kalor hipotetis yang beroperasi dalam suatu siklus reversibel yang disebut siklus Carnot. Model dasar mesin ini dirancang oleh Nicolas Léonard Sadi Carnot, seorang insinyur militer Perancis pada tahun 1824. Model mesin Carnot kemudian dikembangkan secara grafis oleh Émile Clapeyron 1834, dan diuraikan secara matematis oleh Rudolf Clausius pada 1850an dan 1860an. Dari pengembangan Clausius dan Clapeyron inilah konsep dari entropi mulai muncul.

Setiap sistem termodinamika berada dalam keadaan tertentu. Sebuah siklus termodinamika terjadi ketika suatu sistem mengalami rangkaian keadaan-keadaan yang berbeda, dan akhirnya kembali ke keadaan semula. Dalam proses melalui siklus ini, sistem tersebut dapat melakukan usaha terhadap lingkungannya, sehingga disebut mesin kalor.

Sebuah mesin kalor bekerja dengan cara memindahkan energi dari daerah yang lebih panas ke daerah yang lebih dingin, dan dalam prosesnya, mengubah sebagian energi menjadi usaha mekanis. Sistem yang bekerja sebaliknya, dimana gaya eksternal yang dikerjakan pada suatu mesin kalor dapat menyebabkan proses yang memindahkan energi panas dari daerah yang lebih dingin ke energi panas disebut mesin refrigerator.

Pada diagram di samping, yang diperoleh dari tulisan Sadi Carnot berjudul Pemikiran tentang Daya Penggerak dari Api (Réflexions sur la Puissance Motrice du Feu), diilustrasikan ada dua benda A dan B, yang temperaturnya dijaga selalu tetap, dimana A memiliki temperatur lebih tinggi daripada B. Kita dapat memberikan atau melepaskan kalor pada atau dari kedua benda ini tanpa mengubah suhunya, dan bertindak sebagai dua reservoir kalor. Carnot menyebut benda A "tungku" dan benda B "kulkas".[1] Carnot lalu menjelaskan bagaimana kita bisa memperoleh daya penggerak (usaha), dengan cara memindahkan sejumlah tertentu kalor dari reservoir A ke B.
Diagram modern

Dibawah ini adalah diagram mesin Carnot sebagaimana biasanya dimodelkan dalam pembahasan modern
Diagram mesin Carnot (modern) - kalor mengalir dari reservoir bersuhu tinggi TH melalui "fluida kerja", menuju reservoir dingin TC, dan menyebabkan fluida kerja memberikan usaha mekanis kepada lingkungan, melalui siklus penyusutan (kontraksi) dan pemuaian (ekspansi).

Dalam diagram tersebut, sistem ("fluida kerja"), dapat berupa benda fluida atau uap apapun yang dapat menerima dan memancarkan kalor Q, untuk menghasilkan usaha. Carnot mengusulkan bahwa fluida ini dapat berupa zat apapun yang dapat mengalami ekspansi, seperti uap air, uap alkohol, uap raksa, gas permanen, udara, dll. Sekalipun begitu, pada tahun-tahun awal, mesin-mesin kalor biasanya memiliki beberapa konfigurasi khusus, yaitu QH disuplai oleh pendidih, dimana air didihkan pada sebuah tungku, QC biasanya adalah aliran air dingin dalam bentuk embun yang terletak di berbagai bagian mesin. Usaha keluaran W biasanya adalahh gerakan piston yang digunakan untuk memutar sebuah engkol, yang selanjutnya digunakan untuk memutar sebuah katrol. Penggunaannya biasanya untuk mengangkut air dari sebuah pertambangan garam. Carnot sendiri mendefinisikan "usaha" sebagai "berat yang diangkat melalui sebuah ketinggian".
Teorema Carnot

Sebuah mesin nyata (real) yang beroperasi dalam suatu siklus pada temperatur TH and TC tidak mungkin melebihi efisiensi mesin Carnot.
Sebuah mesin nyata (kiri) dibandingkan dengan siklus Carnot (kanan). Entropi dari sebuah material nyata berubah terhadap temperatur. Perubahan ini ditunjukkan dengan kurva pada diagram T-S. Pada gambar ini, kurva tersebut menunjukkan kesetimbangan uap-cair ( lihat siklus Rankine). Sifat irreversibel sistem dan kehilangan ekalor ke lingkungan (misalnya, disebabkan gesekan) menyebabkan siklus Carnot ideal tidak dapat terjadi pada semua langkah sebuah mesin nyata.

Teorema Carnot adalah pernyataan formal dari fakta bahwa:Tidak mungkin ada mesin yang beroperasi diantara dua reservoir panas yang lebih efisien daripada sebuah mesin Carnot yang beroperasi pada dua reservoir yang sama. Artinya, efisiensi maksimum yang dimungkinkan untuk sebuah mesin yang menggunakan temperatur tertentu diberikan oleh efisiensi mesin Carnot,

\eta=\frac{\Delta W}{\Delta Q_H}=1-\frac{T_C}{T_H} \quad\quad\quad\quad\quad\quad\quad\quad\quad(1)

Implikasi lain dari teorema Carnot adalah mesin reversibel yang beroperasi antara dua reservoir panas yang sama memiliki efisiensi yang sama pula.

Efisiensi maksimum yang dinyatakan pada persamaan diatas dapat diperoleh jika dan hanya jika tidak ada entropi yang diciptakan dalam siklus tersebut. Jika ada, maka karena entropi adalah fungsi keadaan, untuk membuang kelebihan entropi agar dapat kembali ke keadaan semula akan melibatkan pembuangan kalor ke lingkungan, yang merupakan proses irreversibel dan akan menyebabkan turunnya efisiensi. Jadi persamaan diatas hanya memberikan efisiensi dari sebuah mesin kalor reversibel.

TERMODINAMIKA

Kerja, Suhu, Kalor, Sistem, Lingkungan, Energi dalam

Sebelum melangkah lebih jauh, alangkah baiknya jika kita pahami kembali beberapa istilah dan konsep dasar yang sering digunakan dalam pokok bahasan termodinamika. Konsep usaha alias kerja (W) sudah dikupas tuntas dalam pokok bahasan usaha dan energi. Konsep suhu dan kalor sudah diobok-obok dalam pokok bahasan Suhu dan Kalor. Konsep energi dalam (energi dalam gas ideal) sudah dioprek dalam pokok bahasan Teori Kinetik Gas. Daripada dirimu harus membuka kembali lembaran yang lama, alangkah baiknya jika kita buka saja lembaran yang baru ;) Met belajar, selamat menikmati sajian dari gurumuda… Semoga terasa lezat dan nikmat di otak… hiks2…

USAHA alias KERJA (W)

Sejauh ini kita sudah berkenalan dengan dua jenis gerakan, yakni gerak translasi (gerak lurus, gerak parabola dkk) dan gerak rotasi. Dengan demikian, kita bisa mengelompokkan kerja menjadi dua bagian, yakni kerja dalam gerak translasi dan kerja dalam gerak rotasi.

Kerja dalam gerak translasi

Dalam gerak translasi, kerja didefinisikan sebagai hasil kali antara perpindahan dengan komponen gaya yang searah dengan perpindahan. Secara matematis bisa ditulis seperti ini :

suhu-kalor-kerja-sistem-energi-dalam-1

Keterangan :

W = Usaha alias kerja

F = gaya

s = perpindahan = perpindahan linear

Apabila benda yang dikenai gaya tidak mengalami perpindahan (s = 0), maka usaha alias kerja = 0. Demikian juga, apabila arah gaya tegak lurus arah perpindahan (teta = 90o. Cos 90o = 0), maka usaha alias kerja = 0.

Usaha hanya memiliki besar dan tidak mempunyai arah, karenanya termasuk besaran skalar. Walaupun gaya dan perpindahan termasuk besaran vektor tetapi usaha merupakan besaran skalar karena diperoleh dari perkalian skalar. Pelajari lagi materi vektor dan skalar kalau dirimu bingung…

Kerja dalam gerak rotasi

Dalam gerak rotasi, kerja didefinisikan sebagai hasil kali antara torsi dengan perpindahan sudut. Secara matematis bisa ditulis seperti ini :

suhu-kalor-kerja-sistem-energi-dalam-2

Satuan Sistem Internasional (SI) untuk usaha alias kerja adalah newton meter (Nm). Satuan newton meter dikenal dengan julukan Joule ( 1 Joule = 1 N.m).

Hubungan antara usaha dengan energi

Usaha alias kerja berkaitan erat dengan energi. Untuk memahami hal ini, gurumuda menggunakan contoh saja… Misalnya dirimu mendorong sepeda motor yang lagi mogok… Sepeda motor bisa bergerak sejauh jarak tertentu (s) akibat adanya gaya dorong (F). Dalam hal ini, sepeda motor bisa bergerak karena dirimu melakukan usaha alias kerja pada sepeda motor tersebut. Ingat : Usaha alias kerja = W = Gaya dorong (F) x Perpindahan (s). Nah, ketika mendorong sepeda motor, dirimu kelelahan alias cape juga khan ? Hal itu disebabkan karena energi potensial kimia dalam tubuhmu berkurang. Sebagian energi potensial kimia dalam tubuhmu dipindahkan ke sepeda motor tersebut. Ketika bergerak, sepeda motor juga punya energi (energi kinetik = EK = ½ mv2. m = massa motor, v = kecepatan motor). Kita bisa mengatakan bahwa ketika dirimu melakukan usaha alias kerja pada motor, energi dalam tubuhmu dipindahkan pada sepeda motor.

Berdasarkan uraian singkat ini, bisa disimpulkan bahwa usaha alias kerja merupakan proses perpindahan energi melalui cara-cara mekanis (mekanis berhubungan dengan gerak menggerak ;) )…

SUHU (T)

Konsep suhu alias temperatur sebenarnya berawal dari rasa panas dan dingin yang dialami oleh indera peraba kita. Berdasarkan apa yang dirasakan oleh indera peraba, kita bisa mengatakan suatu benda lebih panas dari benda yang lain. Atau suatu benda lebih dingin dari benda lain. Ukuran panas atau dinginnya suatu benda ini dikenal dengan julukan suhu alias temperatur. Benda yang terasa panas biasanya memiliki suhu yang lebih tinggi. Sebaliknya, benda yang terasa dingin memiliki suhu yang lebih rendah. Semakin dingin suatu benda, semakin rendah suhunya. Sebaliknya, semakin panas suatu benda, semakin tinggi suhunya. Btw, ukuran panas atau dinginnya suatu benda yang hanya didasarkan pada sentuhan (indera peraba) ini sebenarnya tidak terlalu jelas. Panas yang dirasakan oleh setiap orang bisa saja berbeda. Demikian juga, walaupun menyentuh benda yang sama, panas yang dirasakan oleh bagian tubuh yang berbeda bisa saja berbeda.

Dalam pokok bahasan teori kinetik gas kita sudah mendefinisikan kembali makna suhu. Berdasarkan sudut pandang mikroskopis, suhu sebenarnya merupakan ukuran dari energi kinetik translasi rata-rata molekul.

Satuan Sistem Internasional untuk suhu adalah Kelvin (K).

KALOR alias PANAS (Q)

Apabila benda2 yang memiliki perbedaan suhu saling bersentuhan, akan ada aliran kalor dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah. Aliran kalor akan terhenti setelah kedua benda yang bersentuhan mencapai suhu yang sama. Misalnya kalau kita mencampur air panas dengan air dingin, biasanya kalor mengalir dari air panas menuju air dingin. Kalor berhenti mengalir jika campuran air panas dan air dingin telah berubah menjadi air hangat. Biasanya kalor mengalir dengan sendirinya dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah. Aliran kalor cenderung menyamakan suhu benda yang bersentuhan.

Pada abad ke-18, para ilmuwan berpikir bahwa aliran kalor merupakan gerakan suatu fluida, suatu jenis fluida yang tidak kelihatan (fluida tuh zat yang dapat mengalir. Yang termasuk fluida adalah zat cair dan zat gas. Misalnya air… air khan bisa mengalir. Atau udara… Udara juga bisa mengalir). Fluida tersebut dinamakan Caloric. Teori mengenai Caloric ini akhirnya tidak digunakan lagi karena berdasarkan hasil percobaan, keberadaan si caloric ini tidak bisa dibuktikan.

Pada abad ke-19, seorang pembuat minuman dari Inggris yang bernama James Prescott Joule (1818-1889) mempelajari cara bagaimana agar air yang ada di dalam sebuah wadah bisa dipanaskan menggunakan roda pengaduk. Berikut ini kilasan singkat percobaan yang dilakukan oleh om Jimi.

suhu-kalor-kerja-sistem-energi-dalam-3

Tataplah gambar di atas dengan penuh kelembutan. Pengaduk menempel dengan sumbu putar. Sumbu putar dihubungkan dengan beban menggunakan tali. Ketika beban jatuh, tali akan memutar sumbu sehingga pengaduk ikut2an berputar. Jika jumlah lilitan tali sedikit dan jarak jatuhnya beban kecil, maka kenaikan suhu air juga sedikit. Sebaliknya, jika lilitan tali diperbanyak dan benda jatuh lebih jauh, maka kenaikan suhu air juga lebih besar.

Ketika pengaduk berputar, pengaduk melakukan usaha alias kerja pada air. Besarnya kerja alias usaha yang dilakukan oleh pengaduk pada air sebanding dengan besarnya kerja alias usaha yang dilakukan oleh gaya gravitasi terhadap beban hingga beban jatuh sejauh h. Ingat rumus usaha alias kerja : Usaha (W) = Gaya (F) x perpindahan (s) = Gaya berat beban (w) x perpindahan beban (h) = massa beban (m) x percepatan gravitasi (g) x ketinggian (h). Ketika melakukan kerja terhadap air, pengaduk menambahkan energi pada air (ingat konsep usaha dan energi). Karenanya kita bisa mengatakan bahwa kenaikan suhu air disebabkan oleh energi yang dipindahkan dari pengaduk menuju air. Semakin besar kerja yang dilakukan, semakin banyak energi yang dipindahkan. Semakin banyak energi yang dipindahkan, semakin besar kenaikan suhu air (air semakin panas).

Berdasarkan hasil percobaannya, om Jimi Joule membuat perbandingan. Ketika ibu kesayangan hendak memanaskan air di dapur, wadah yang berisi air disentuhkan dengan nyala api yang menyembur dari kompor. Ketika nyala api dan wadah yang berisi air bersentuhan, kalor mengalir dari api (suhu tinggi) menuju air (suhu rendah). Oya, aliran kalor mampir sebentar di wadah. Karena ada aliran kalor dari api menuju air, maka air yang pada mulanya kedinginan menjadi kepanasan (suhu air meningkat).

Setelah membuat perbandingan antara meningkatnya suhu air karena bersentuhan dengan api dan meningkatnya suhu air akibat adanya kerja yang dilakukan oleh pengaduk, om Jimi menyimpulkan bahwa kalor sebenarnya merupakan energi yang berpindah. Ingat ya, kalor bukan energi (kalor bukan suatu jenis energi tertentu). Jadi ketika kalor mengalir dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah, sebenarnya energi-lah yang berpindah dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah. Proses perpindahan energi akan terhenti ketika benda-benda yang bersentuhan mencapai suhu yang sama. Berdasarkan penjelasan yang panjang pendek dan bertele2 di atas, kita bisa menyimpulkan bahwa kalor merupakan energi yang berpindah dari satu benda ke benda yang lain akibat adanya perbedaan suhu.

Satuan kalor adalah kalori (disingkat kal). Satuan kalor yang sering digunakan, terutama untuk menyatakan nilai energi makanan adalah kilokalori (kkal). 1 kkal = 1000 kalori. 1 kkal = 1 Kalori (huruf K besar). Btw, kalori bukan satuan Sistem Internasional. Satuan Sistem Internasional untuk kalor adalah Joule (J).

Berdasarkan penjelasan di atas, tampak bahwa kalor (Q) memiliki kemiripan dengan usaha alias kerja (W). Kalor bisa diartikan sebagai perpindahan energi yang disebabkan oleh adanya perbedaan suhu, sedangkan usaha alias kerja bisa diartikan sebagai perpindahan energi melalui cara-cara mekanis (mekanis tuh berkaitan dengan gerak)…

SISTEM dan LINGKUNGAN

Dalam termodinamika, kita selalu menganalisis proses perpindahan energi dengan mengacu pada suatu sistem. Sistem adalah sebuah benda atau sekumpulan benda yang hendak diteliti… Benda-benda lainnya di alam semesta dinamakan lingkungan… Biasanya sistem dipisahkan dengan lingkungan menggunakan “penyekat/pembatas/pemisah”. Untuk memudahkan pemahamanmu, gurumuda menggunakan ilustrasi saja… tataplah gambar di bawah dengan penuh kelembutan…

suhu-kalor-kerja-sistem-energi-dalam-4

Misalnya kita hendak menyelidiki air yang berada di dalam termos. Air yang ada di dalam termos merupakan sistem, sedangkan udara dan benda-benda lainnya yang berada diluar termos merupakan lingkungan… dinding termos, baik dinding kaca pada bagian dalam termos maupun dinding plastik pada bagian luar termos berfungsi sebagai penyekat alias pemisah…

Terdapat beberapa jenis sistem, yakni sistem terbuka dan sistem tertutup. Sistem terbuka merupakan sistem yang memungkinkan terjadinya pertukaran materi dan energi antara sistem tersebut dengan lingkungan… Contoh sistem terbuka adalah tumbuh-tumbuhan, hewan dkk… Tumbuh-tumbuhan biasanya menyerap air dan karbondioksida dari lingkungan (terjadi pertukaran materi). Tumbuhan juga membutuhkan kalor yang dipancarkan matahari (terjadi pertukaran energi). Dirimu dan diriku juga termasuk sistem terbuka… Masih banyak contoh lain…

Sebaliknya, sistem tertutup merupakan sistem yang tidak memungkinkan terjadinya pertukaran materi antara sistem tersebut dengan lingkungan. Sistem tertutup dikatakan terisolasi jika tidak adanya kemungkinan terjadi pertukaran energi antara sistem dengan lingkungan. Sistem tertutup dikatakan tidak terisolasi jika bisa terjadi pertukaran energi antara sistem dengan lingkungan… Contoh sistem tertutup yang terisolasi adalah termos air panas. Dinding bagian dalam dari termos air panas biasanya terbuat dari bahan isolator (untuk kasus ini, isolator = bahan yang tidak menghantarkan panas). Btw, dalam kenyataannya memang banyak sistem terisolasi buatan yang tidak sangat ideal. Minimal ada energi yang berpindah keluar, tapi jumlahnya sangat kecil.

ENERGI DALAM (U)

Energi dalam merupakan salah satu konsep paling penting dalam termodinamika. Kita bisa mendefinisikan energi dalam dengan mengacu pada teori kinetik. Teori kinetik mengatakan bahwa setiap zat terdiri dari atom atau molekul, di mana atom atau molekul tersebut bergerak terus menerus secara sembarangan… Ketika bergerak, atom atau molekul pasti punya kecepatan. Atom atau molekul juga punya massa. Karena punya massa (m) dan kecepatan (v), maka tentu saja atom atau molekul mempunyai energi kinetik (EK). Kita bisa mengatakan bahwa energi dalam merupakan jumlah seluruh energi kinetik atom atau molekul, ditambah jumlah seluruh energi potensial yang timbul akibat adanya interaksi antara atom atau molekul…
Hukum pertama termodinamika

Pengantar

Pernah memanaskan air ? Kalau kita panaskan air menggunakan wadah seperti panci, misalnya, biasanya setelah air mendidih, tutup panci bisa bergerak sendiri. Tutup panci bisa bergerak karena ditendang ;) oleh uap yang lagi kepanasan dalam panci… Ingin bebas, katanya. Sudah bosan hidup di penjara… Ada lagi contoh yang mirip. Dirimu pernah ngemil popcorn ? Mudah2an sudah… Kalau belum, minta saja di toko terdekat. Ssttt… jangan lupa bawa uang receh secukupnya, biar dirimu tidak diomelin. Btw, tahu cara membuat popcorn ? Biasanya popcorn dimasukkan ke dalam wadah lalu dipanaskan. Setelah kepanasan, biji popcorn berdisco ria dengan teman-temannya dan mendorong penutup wadah. Aneh ya, cuma dipanasi dengan nyala api, biji popcorn dalam wadah meletup dan loncat-loncat sendiri. Saking senangnya, penutup wadah jadi korban kenakalan mereka ;) mengapa bisa terjadi seperti itu ?

Proses Termodinamika

Dalam postingan sebelumnya, gurumuda sudah menjelaskan secara panjang pendek mengenai Kalor (Q), Kerja (W), Sistem dan Lingkungan. Sebaiknya pelajari terlebih dahulu materi sebelumnya,biar dirimu nyambung dengan penjelasan gurumuda dalam pembahasan ini…

Kalor (Q) merupakan energi yang berpindah dari satu benda ke benda yang lain akibat adanya perbedaan suhu. Berkaitan dengan sistem dan lingkungan, bisa dikatakan bahwa kalor merupakan energi yang berpindah dari sistem ke lingkungan atau energi yang berpindah dari lingkungan ke sistem akibat adanya perbedaan suhu. Jika suhu sistem lebih tinggi dari suhu lingkungan, maka kalor akan mengalir dari sistem menuju lingkungan. Sebaliknya, jika suhu lingkungan lebih tinggi dari suhu sistem, maka kalor akan mengalir dari lingkungan menuju sistem.

Jika Kalor (Q) berkaitan dengan perpindahan energi akibat adanya perbedaan suhu, maka Kerja (W) berkaitan dengan perpindahan energi yang terjadi melaluicara-cara mekanis (mekanis tuh berkaitan dengan gerak)… Misalnya jika sistem melakukan kerja terhadap lingkungan, maka energi dengan sendirinya akan berpindah dari sistem menuju lingkungan. Sebaliknya jika lingkungan melakukan kerja terhadap sistem, maka energi akan berpindah dari lingkungan menuju sistem.

Salah satu contoh sederhana berkaitan dengan perpindahan energi antara sistem dan lingkungan yang melibatkan Kalor dan Kerja adalah proses pembuatanpopcorn. Dirimu ngerti popcorn tidak ? biji jagung yang ada bunganya :) Gurumuda kurang ngerti proses pembuatan popcorn secara mendetail. Btw, garis besarnya seperti ini… Biasanya popcorn dimasukkan ke dalam wadah tertutup (panci atau alat masak lainnya). Selanjutnya, wadah tertutup tersebut dipanasi dengan nyala api kompor. Adanya tambahan kalor dari nyala api membuat bijipopcorn dalam panci kepanasan dan meletup. Ketika meletup, biasanya biji popcorn berjingkrak-jingkrak dalam panci dan mendorong penutup panci. Gaya dorong biji popcorn cukup besar sehingga kadang tutup panci bisa berguling ria… Untuk kasus ini, kita bisa menganggap popcorn sebagai sistem, panci sebagai pembatas dan udara luar, nyala api dkk sebagai lingkungan. Karena terdapat perbedaan suhu, maka kalor mengalir dari lingkungan (nyala api) menuju sistem (bijipopcorn). Adanya tambahan kalor menyebabkan sistem (biji popcorn) memuai dan meletup sehingga mendorong penutup panci (si biji popcorn tadi melakukan kerja terhadap lingkungan). Dalam proses ini, keadaan popcorn berubah. Keadaan popcorn berubah karena suhu, tekanan dan volume popcorn berubah saat memuai dan meletup… meletupnya popcorn hanya merupakan salah satu contoh perubahan keadaan sistem akibat adanya perpindahan energi antara sistem dan lingkungan. Masih sangat banyak contoh lain, sebagiannya sudah gurumuda ulas pada bagian pengantar… Perubahan keadaan sistem akibat adanya perpindahan energi antara sistem dan lingkungan yang melibatkan Kalor dan Kerja, disebut sebagai proses termodinamika.

Energi dalam dan Hukum Pertama Termodinamika

Pada postingan sebelumnya, gurumuda sudah menjelaskan secara singkat mengenai energi dalam (U). Energi dalam sistem merupakan jumlah seluruh energi kinetik molekul sistem, ditambah jumlah seluruh energi potensial yang timbul akibat adanya interaksi antara molekul sistem. Kita berharap bahwa jika kalor mengalir dari lingkungan menuju sistem (sistem menerima energi), energi dalam sistem akan bertambah… Sebaliknya, jika sistem melakukan kerja terhadap lingkungan (sistem melepaskan energi), energi dalam sistem akan berkurang…

Dengan demikian, dari kekekalan energi, kita bisa menyimpulkan bahwa perubahan energi dalam sistem = Kalor yang ditambahkan pada sistem (sistem menerima energi) – Kerja yang dilakukan oleh sistem (sistem melepaskan energi). Secara matematis, bisa ditulis seperti ini :

hukum-pertama-termodinamika-1

Keterangan :

delta U = Perubahan energi dalam

Q = Kalor

W = Kerja

Persamaan ini berlaku untuk sistem tertutup (Sistem tertutup merupakan sistem yang hanya memungkinkan pertukaran energi antara sistem dengan lingkungan). Untuk sistem tertutup yang terisolasi, tidak ada energi yang masuk atau keluar dari sistem, karenanya, perubahan energi dalam = 0. Persamaan ini juga berlaku untuk sistem terbuka jika kita memperhitungkan perubahan energi dalam sistem akibat adanya penambahan dan pengurangan jumlah zat (Sistem terbuka merupakan sistem yang memungkinkan terjadinya pertukaran materi dan energi antara sistem tersebut dengan lingkungan). Mengenai sistem terbuka dan tertutup telah gurumuda jelaskan pada postingan sebelumnya…

Hukum pertama termodinamika merupakan pernyataan Hukum Kekekalan Energi dan ketepatannya telah dibuktikan melalui banyak percobaan (seperti percobaan om Jimi Joule). Perlu diketahui bahwa hukum ini dirumuskan pada abad kesembilan belas, setelah kalor dipahami sebagai energi yang berpindah akibat adanya perbedaan suhu.

Energi dalam merupakan besaran yang menyatakan keadaan mikroskopis sistem. Besaran yang menyatakan keadaan mikroskopis sistem (energi dalam) tidak bisa diketahui secara langsung. Yang kita analisis dalam persamaan Hukum Pertama Termodinamika hanya perubahan energi dalam saja. Perubahan energi dalam bisa diketahui akibat adanya energi yang ditambahkan pada sistem dan energi yang dilepaskan sistem dalam bentuk kalor dan kerja. Jika besaran yang menyatakan keadaan mikroskopis sistem (energi dalam) tidak bisa diketahui secara langsung, maka besaran yang menyatakan keadaan makroskopis bisa diketahui secara langsung. Besaran yang menyatakan keadaan makroskopis adalah suhu (T), tekanan (p), volume (V) dan massa (m) atau jumlah mol (n). Ingat ya, Kalor dan Kerja hanya terlibat dalam proses perpindahan energi antara sistem dan lingkungan. Kalor dan Kerja bukan merupakan besaran yang menyatakan keadaan sistem.

Aturan tanda untuk Kalor (Q) dan Kerja (W)

Aturan tanda untuk Kalor dan Kerja disesuaikan dengan persamaan Hukum Pertama Termodinamika. Kalor (Q) dalam persamaan di atas merupakan kalor yang ditambahkan pada sistem (Q positif), sedangkan Kerja (W) pada persamaan di atas merupakan kerja yang dilakukan oleh sistem (W positif). Karenanya, jika kalor meninggalkan sistem, maka Q bernilai negatif. Sebaliknya, jika kerja dilakukan pada sistem, maka W bernilai negatif. Pahami perlahan-lahan….

Hukum pertama termodinamika : pernyataan kekekalan energi

Pengantar

Dalam pembahasan sebelumnya gurumuda sudah menjelaskan secara panjang pendek mengenai Hukum Pertama Termodinamika. Konon katanya, hukum pertama termodinamika merupakan pernyataan hukum kekekalan energi. Aneh ya, hukum pertama termodinamika khan hanya membahas hubungan antara kalor (Q), kerja (W) dan perubahan energi dalam (delta U). Lalu mengapa bisa disebut sebagai pernyataan hukum kekekalan energi ?

Bentuk-bentuk energi

Dalam kehidupan kita sehari-hari terdapat banyak bentuk energi. Pada pokok bahasan usaha dan energi, kita sudah berkenalan dengan dua bentuk energi mekanik, yakni energi potensial (potensial = tersimpan) dan energi kinetik (kinetik = gerak). Energi potensial terdiri dari beberapa jenis, di antaranya adalah EP gravitasi, EP elastis dan EP magnet. Energi kinetik terdiri dari dua jenis, yakni energi kinetik translasi dan energi kinetik rotasi.

Buah mangga yang lezat dan ranum memiliki energi potensial gravitasi ketika sedang menggelayut pada tangkainya. Demikian juga ketika dirimu berada pada ketinggian tertentu dari permukaan tanah, misalnya di atap rumah ;) . Energi potensial gravitasi dimiliki benda karena posisi relatifnya terhadap bumi. Karet ketapel yang kita regangkan memiliki energi potensial elastis. Karet ketapel dapat melontarkan batu karena adanya energi potensial elastis pada karet yang diregangkan. Demikian juga busur yang ditarik oleh pemanah dapat menggerakan anak panah, karena terdapat energi potensial elastis pada busur yang diregangkan. Benda yang berada di dekatmagnet memiliki energi potensial magnet. Ketika kita melepaskan benda yang kita pegang (paku, misalnya), dalam waktu singkat paku akan bergerak menuju magnet.

Selain energi potensial dan energi kinetik yang dimiliki materi yang berukuran besar dan sering kita lihat dalam kehidupan sehari-hari, terdapat juga bentuk energi yang lain. Ada energi listrik, energi nuklir, energi kimia, etc… setelah muncul teori kinetik, dikatakan bahwa energi dalam bentuk lain tersebut (energi listrik, energi kimia, dkk) merupakan energi kinetik atau energi potensial pada tingkat atom atau molekul. Energi kimia yang tersimpan dalam makanan dan bahan bakar dianggap sebagai energi potensial yang tersimpan dalam molekul, akibat adanya gaya listrik antara atom penyusun molekul (disebut juga sebagai ikatan kimia). Energi listrik, energi magnetik, energi nuklir juga dapat diangap sebagai energi kinetik atau energi potensial dalam skala atomik. Mengenai hal ini akan dibahas secara lengkap dalam episode berikutnya…

Perubahan bentuk energi

Perlu diketahui bahwa energi dapat berubah dari satu bentuk ke bentuk lain. Pada tingkat makroskopis, kita bisa menemukan begitu banyak contoh perubahan bentuk energi. Buah mangga yang menggelayut di tangkainya memiliki energi potensial gravitasi. Pada saat buah mangga jatuh ke tanah, energi potensialnya berkurang sepanjang lintasan geraknya menuju tanah. Ketika mulai jatuh, energi potensial berkurang karena jarak vertikal buah mangga dari tanah makin kecil. EP tersebut berubah bentuk menjadi energi kinetik translasi karena kecepatan buah mangga bertambah akibat percepatan gravitasi yang bernilai konstan. Energi potensial elastis yang tersimpan pada ketapel yang diregangkan dapat berubah menjadi energi kinetik translasi batu apabila ketapel kita lepas… busur yang melengkung juga memiliki energi potensial elastis. Energi potensial elastis pada busur yang melengkung dapat berubah menjadi energi kinetik translasi anak panah. Pada tingkat mikroskopis, kita juga bisa menemukan contoh perubahan bentuk energi. Ketika dirimu menyalakan lampu neon, pada saat yang sama terjadi perubahan energi listrik menjadi energi cahaya. Contoh lain adalah perubahan energi listrik menjadi energi gerak (kipas angin) dll. Proses perubahan bentuk energi listrik ini sebenarnya disebabkan oleh adanya perubahan antara energi potensial dan energi kinetik pada tingkat atom atau molekul.

Perubahan bentuk energi biasanya

melibatkan perpindahan energi dari satu benda ke benda lain

Perubahan bentuk energi biasanya melibatkan perpindahan energi dari satu benda ke benda lainnya. Busur yang melengkung memiliki energi potensial elastis. Ketika busur dilepaskan, energi potensial elastis busur berubah bentuk menjadi energi kinetik translasi anak panah. Pada saat yang sama, energi berpindah dari busur menuju anak panah. Ketika dirimu mendorong sepeda motor yang lagi mogok, energi potensial kimia dalam tubuhmu berubah bentuk menjadi energi kinetik translasi sepeda motor. Pada saat yang sama, energi berpindah dari dirimu menuju sepeda motor. Air di bagian atas bendungan memiliki energi potensial gravitasi. Ketika si air jatuh, energi potensial gravitasi air berubah menjadi energi kinetik translasi air. Selanjutnya air yang jatuh tadi menggerakan turbin. Ketikasi air menggerakan turbin, energi kinetik translasi air berubah menjadi energi kinetik rotasi turbin. Pada saat yang sama, energi berpindah dari air menuju turbin.

Kerja selalu dilakukan ketika terjadi perpindahan energi

Pada masing-masing contoh yang telah gurumuda ulas sebelumnya, tampak bahwa perpindahan energi selalu disertai dengan adanya usaha alias kerja (Work). Ketika energi berpindah dari busur menuju anak panah, si busur melakukan kerja pada anak panah. Ketika energi berpindah dari dirimu menuju sepeda motor, dirimu melakukan kerja pada sepeda motor. Ketika energi berpindah dari air menuju turbin, air melakukan kerja pada turbin. Seandainya tidak ada kerja yang dilakukan, tidak mungkin anak panah bergerak ketika busur dilepaskan, sepeda motor butut yang lagi mogok juga tidak mungkin bergerak ketika didorong. Demikian juga dengan turbin. Tapi kenyataannya anak panah, sepeda motor mogok dan turbin bergerak. Dari kenyataan ini, bisa disimpulkan bahwa usaha alias kerja (W) selalu dilakukan ketika energi berpindah dari satu benda ke benda yang lainnya.

Walaupun sudah mengetahui dan meyadari sepenuh hati ;) bahwa si energi selalu berubah bentuk dan bergentayangan dari satu benda ke benda yang lain, tetapi om-om ilmuwan belum bisa menyimpulkan bahwa energi itu kekal. Mereka macet ketika berhadapan dengan kalor alias panas. Biasanya kalor alias panas selalu muncul akibat adanya gesekan… Misalnya dirimu mendorong sebuah balok yang berada di atas lantai. Ketika mendorong balok, energi potensial kimia dalam tubuhmu berubah bentuk menjadi energi kinetik translasi balok. Pada saat yang sama, energi berpindah dari dirimu menuju balok. Ketika energi berpindah dari dirimu menuju balok, dirimu melakukan kerja pada balok (W = Fs). Tentu saja si balok bergerak… Nah, setelah bergerak, balok biasanya berhenti… Balok berhenti akibat adanya gaya gesekan. Di mana ada gesekan, di situ ada kalor alias panas… coba gosokan/gesekan kedua telapak tanganmu. Kedua telapak tanganmu terasa panas khan ? hal yang sama terjadi pada balok. Permukaan lantai dan alas balok menjadi panas akibat adanya gesekan. Gesekan ini yang bikin si balok berhenti jalan-jalan. Gaya gesekan disebut juga sebagai gaya disipatif, karena gaya gesekan memperkecil atau melenyapkan energi mekanik total (energi mekanik = energi potensial + energi kinetik). Untuk kasus ini, gaya gesekan melenyapkan energi kinetik translasi balok. Energi kinetik balok berasal dari energi potensial kimia.

Kalau balok berhenti bergerak (v = 0), berarti energi kinetiknya lenyap dunk (EK = ½ mv2 = 0). Energi kinetik translasi tadi kabur ke mana ? Kesimpulan sementara : energi tidak kekal.

Kalor alias panas = ?

Perlu diketahui bahwa sebelum abad kesembilan belas, tidak seorang ilmuwan pun yang tahu kalor alias panas itu sebenarnya apa… Seperti biasa, di mana ada kebuntuan dalam ilmu fisika, di situ muncul teori baru. Muncul sebuah teori yang mengatakan bahwa kalor alias panas itu sejenis zat tertentu (zat tersebut dijuluki caloric). Btw, keberadaan zat yang punya nama samaran caloric ini tidak bisa dibuktikan. Mulai akhir tahun 1830 (abad kesembilanbelas), om James Joule (1818-1889) dan teman-temannya dalam pasukan ilmuwan kelas kakap mulai memainkan alat peraganya ;) Berdasarkan eksperimen yang dilakukannya, om Jimi menemukan bahwa energi kinetik yang hilang selalu sama dengan kalor alias panas yang dihasilkan. Kalor maupun energi kinetik tidak ada yang bersifat kekal secara terpisah. Yang selalu kekal adalah jumlah total energi kinetik dan kalor… Salah satu eksperimen yang dilakukan oleh om Jimi Joule sudah gurumuda jelaskan pada pokok bahasan sebelumnya. Berdasarkan hasil eksperimen yang diperolehnya, om Jimi Joule membuat perbandingan dengan perpindahan kalor yang biasa terjadi antara benda bersuhu tinggi (benda panas) dengan benda bersuhu rendah (benda dingin). Om Jimi Joule kemudian menyimpulkan bahwa kalor alias panas merupakan energi yang berpindah akibat adanya perbedaan suhu. Ini adalah pengertian kalor dari sudut pandang makroskopis. Dari sudut pandang mikroskopis, kita bisa menjelaskan kalor menggunakan teori kinetik. Dalam pokok bahasan teori kinetik gas, kita belajar bahwa suhu suatu benda merupakan ukuran dari energi kinetik molekul-molekul penyusun benda tersebut. Semakin tinggi suhu benda, semakin besar energi kinetik molekul-molekul penyusun benda. Energi kinetik berkaitan dengan kecepatan gerak. Semakin besar energi kinetik (EK besar) molekul-molekul, semakin besar kecepatan gerak (v besar) molekul-molekul. Nah, apabila kita menyentuhkan benda yang bersuhu tinggi (benda panas) dengan benda yang bersuhu rendah (benda dingin), secara otomatis kalor mengalir dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah. Adanya tambahan kalor menyebabkan benda yang dingin bertambah panas… Ketika bertambah panas (suhu benda meningkat), energi kinetik molekul-molekul penyusun benda tentu saja semakin besar (kecepatan gerak molekul makin besar). Dengan demikian, kita bisa menyimpulkan bahwa kalor alias panas sebenarnya merupakan energi kinetik molekul-molekul yang bergerak cepat…

Setelah mengetahui bahwa kalor alias panas merupakan energi yang berpindah akibat adanya perbedaan suhu (pengertian makroskopis) atau kalor merupakan energi kinetik molekul-molekul yang bergerak cepat (pengertian mikroskopis), akhirnya para ilmuwan dengan penuh semangat merumuskan hukum kekekalan energi.

Energi dapat berubah dari satu bentuk ke bentuk lain, berpindah dari satu benda ke benda yang lain, tetapi energi total tidak pernah berkurang atau bertambah. Istilah gaulnya, energi selalu kekal… Ini adalah pernyataan hukum kekekalan energi. Jangan pake hafal…

Terus hubungannya sama hukum pertama termodinamika gmn sich ? hubungan mereka baik2 saja… hiks2…

Sebelumnya sudah dijelaskan bahwa perubahan bentuk energi biasanya melibatkan perpindahan energi dari satu benda ke benda lainnya. Setiap perpindahan energi selalu disertai dengan adanya usaha alias kerja (Work). Dari hasil eksperimen dan analisis para ilmuwan, diketahui bahwa kalor sebenarnya merupakan energi yang berpindah akibat adanya perbedaan suhu (pengertian makroskopis) atau kalor merupakan energi kinetik molekul-molekul yang bergerak cepat (pengertian mikroskopis). Kita bisa mengatakan bahwa kerja (W) dan kalor (Q) terlibat dalam perpindahan energi. Hukum pertama termodinamika yang sudah kita pelajari dalam pokok bahasan sebelumnya merupakan hukum yang menjelaskan perpindahan energi yang melibatkan kalor dan kerja. Ingat ya, kalor dan kerja bukan suatu bentuk energi. Kalor dan kerja hanya terlibat dalam perpindahan energi antara benda dengan benda, antara benda dengan makhluk hidup atau antara makhluk hidup dengan makhluk hidup…

Dalam hukum pertama termodinamika, kita berkenalan dengan sebuah besaran baru, yakni energi dalam (U). Energi dalam merupakan jumlah total energi kinetik molekul-molekul dan energi potensial yang timbul akibat adanya interaksi antara atom-atom penyusun molekul atau interaksi antara molekul-molekul penyusun suatu benda atau makhluk hidup… Setiap benda tersusun dari atom-atom atau molekul-molekul. Dengan demikian, setiap benda yang ada di alam semesta ini pasti punya energi dalam. Setiap proses perpindahan energi yang melibatkan Kalor dan Kerja akan mengakibatkan perubahan energi dalam. Hal ini yang kita bahas dalam hukum pertama termodinamika. Jadi dirimu jangan pake heran kalau ada orang yang mengatakan bahwa hukum pertama termodinamika = hukum kekekalan energi. Mudah-mudahan penjelasan panjang pendek dan bertele-tele sebelumnya membantumu memahami hal ini… Jika bingung berlanjut, silahkan hubungi dokter terjauh ;)

Perlu diketahui bahwa istilah sistem dan lingkungan yang kita pakai dalam termodinamika sebenarnya hanya membantu analisa kita saja… Pada dasarnya energi berpindah dari satu benda ke benda lain, dari satu makhluk hidup ke makhluk hidup lain. Tapi alangkah baiknya jika kita batasi saja hal-hal yang mau kita selidiki dan hal-hal lain yang tidak kita selidiki. Kita menyebut benda-benda yang diselidiki sebagai sistem, sedangkan benda yang lain kita beri julukan lingkungan… Sekian dan sampai jumpa lagi pada episode berikutnya…

Hukum kedua termodinamika (Pernyataan khusus)

Pengantar

Katanya stok minyak bumi dalam perut bumi sekarang tinggal sedikit, karenanya kita diminta untuk menghemat energi. Aneh ya… Menurut hukum pertama termodinamika, dalam suatu sistem tertutup (alam semesta kita termasuk sistem tertutup), jumlah energi total selalu kekal. Energi dapat berubah bentuk dan berpindah dari satu benda ke benda yang lain, tetapi jumlah energi total selalu tetap. Kalau energi selalu kekal, mengapa kita harus menghemat energi ?

Benar bahwa hukum pertama termodinamika mengatakan kepada kita bahwa energi selalu kekal. Walaupun demikian, hukum pertama termodinamika tidak menjelaskan kepada kita bahwa ada bentuk energi yang berguna, sedangkan ada bentuk energi yang tidak berguna… Energi potensial kimia dalam minyak bumi merupakan salah satu bentuk energi yang berguna. Energi potensial kimia dalam minyak bumi (bensi, solar, minyak tanah, etc) bisa kita gunakan untuk menggerakkan kendaraan, memasak makanan atau bisa juga digunakan untuk membangkitkan listrik. Energi potensial gravitasi air di waduk bisakita gunakan untuk membangkitkan listrik. Energi panas bumi juga bisa kita gunakan untuk membangkitkan listrik. Energi kinetik angin, energi panas matahari, energi nuklir dkk… Mengenai sumber energi akan dibahas dalam episode berikutnya…

Ketika energi yang berguna tersebut kita manfaatkan, akan terjadi perubahan bentuk energi. Jika digunakan untuk menggerakkan kendaraan, energi potensial kimia dalam minyak bumi akan berubah bentuk menjadi energi kinetik kendaraan + kalor alias panas (panas timbul akibat adanya gesekan). Jika digunakan untuk membangkitkan listrik, energi potensial gravitasi pada air di waduk akan berubah bentuk menjadi energi kinetik rotasi turbin. Energi kinetik rotasi turbin akan berubah bentuk menjadi energi listrik. Energi listrik akan berubah bentuk menjadi energi kinetik rotasi (kipas angin), energi cahaya (lampu), kalor alias panas (setrika listrik) dkk… Energi kinetik rotasi kipas akan berubah bentuk menjadi energi dalam udara + kalor alias panas (panas timbul akibat adanya gesekan pada kipas). Energi potensial gravitasi pada buah mangga akan berubah bentuk menjadi energi kinetik translasi apabila buah mangga tersebut jatuh ke tanah. Ketika mencium tanah, energi kinetik translasi buah mangga akan berubah bentuk menjadi energi dalam buah mangga tersebut + energi dalam tanah.Dari beberapa contoh perubahan bentuk energi ini, tampak bahwa hukum pertama termodinamika baik adanya… Btw, sangat banyak proses di alam semestayang kita harapkan dapat mengubah bentuk energi tetapi kenyataannya tidak pernah terjadi… Apakah dirimu pernah melihat yang sebaliknya – buah mangga yang sedang diam di tanah tiba-tiba bergerak ke atas karena energi dalam berubah bentuk menjadi energi kinetik ? Seandainya energi dalam berubah menjadi energi kinetik sehingga buah mangga meluncur ke atas, hukum pertama termodinamika tidak pernah dilanggar. Energi akan selalu kekal dalam proses tersebut… tapi kenyataanya buah mangga tidak pernah meluncur ke atas dengan sendirinya…

Semua proses yang terjadi secara alami hanya berlangsung pada satu arah saja tapi tidak dapat berlangsung pada arah sebaliknya (biasa disebut sebagai proses ireversibel alias tidak dapat balik). Setelah terlepasdari tangkainya dan jatuh bebas hingga mencium tanah, buah mangga tidak pernah meluncur ke atas lagi. Buku yang kita dorong lalu berhenti tidak pernah bergerak kembali ke arah kita. Kalau kita menyentuhkan benda yang bersuhu tinggi (benda panas) dengan benda yang bersuhu rendah (benda dingin), kalor alias panas dengan sendirinya mengalir dari benda bersuhu tinggi menuju benda yang bersuhu rendah. Kita tidak pernah melihat proses sebaliknya, di mana kalor dengan sendirinya berpindah dari benda dingin menuju benda panas. Jika proses ini terjadi, maka benda yang dingin akan bertambah dingin, sedangkan benda yang panas akan bertambah panas. Tapi kenyataannya tidak seperti itu… Terdapat banyak proses ireversibel yang tampaknya berbeda satu sama lain, tapi semuanya berkaitan dengan perubahan bentuk energi dan perpindahan energi dari satu benda ke benda lain. Misalnya ada gempa bumi dasyat sehingga bangunan-bangunan pada roboh (bangunan roboh akibat adanya energi yang dibawa oleh gelombang gempa). Apakah dirimu pernah melihat setiap bagian bangunan yang roboh tersebut ngumpul lagi dan berdiri tegak seperti semula ? Atau misalnya adikmu yang sangat nakal menjatuhkan sebuah gelas ke lantai hingga pecah… Apakah dirimu pernah melihat serpihan-serpihan gelas yang tercecer di lantai ngumpul lagi dan membentuk gelas hingga utuh seperti semula ? Tidak pernah terjadi… masih sangat banyak contohlain. Sisanya dipikirkan sendiri ya… Semua proses ireversibel tersebut kelihatannya sangat sepele sehingga kadang luput dari perhatian kita. Btw, kesimpulan akhir-nya bikin diriku ketakutan :( Mengenai hal ini akan gurumuda bahas pada episode berikutnya (Entropi dan hukum kedua termodinamika – pernyataan umum). Terlebih dahulukita kupas tuntas beberapa pernyataan khusus dari hukum kedua termodinamika…

Untuk menjelaskan proses termodinamika yang hanya terjadi pada satu arah (proses ireversibel), para ilmuwan merumuskan hukum kedua termodinamika. Hukum kedua termodinamika menjelaskan proses apa sajayang bisa terjadi di alam semesta dan proses apa saja yang tidak bisa terjadi. Salah seorang ilmuwan yang bernama R. J. E. Clausius (1822-1888) membuat sebuah pernyataan berikut :

Kalor berpindah dengan sendirinya dari benda bersuhu tinggi ke benda bersuhu rendah; kalor tidak akan berpindah dengan sendirinya dari benda bersuhu rendah ke benda bersuhu tinggi (Hukum kedua termodinamika – pernyataan Clausius).

Pernyataan eyang butut Clausius merupakan salah satu pernyataan khusus hukum kedua termodinamika. Disebut pernyataan khusus karena hanya berlaku untuk satu proses saja (berkaitan dengan perpindahan kalor). Karena pernyataan ini tidak berkaitan dengan proses lainnya, maka kita membutuhkan pernyataan yang lebih umum. Perkembangan pernyataan umum hukum kedua termodinamika sebagiannya didasarkan pada studi tentang mesin kalor. Karenanya terlebih dahulukita bahas mesin kalor…

MESIN KALOR (heat engine)

Pada dasarnya setiap manusia, baik diriku, dirimu dan dirinya ;) menginginkan kehidupan yang lebih nyaman dan mudah. Untuk melakukan kerja, biasanya kita memanfaatkan kekuatan otot. Btw, kekuatan otot kita sangat terbatas, karenanya kita ingin membuat alat yang bisa menggantikan atau mengurangi beban kerja otot. Misalnya dirimu sekarang tinggal di jakarta. Waktu liburan, dirimu ingin jalan-jalan ke surabaya… Apakah dirimu bisa jalan kakidari jakarta menuju surabaya ? bisa si bisa, tapi kakimu akan kejang-kejang di sepanjang jalan ;) Sudah gitu, berbulan-bulan baru dirimu tiba di surabaya. Syukur kalau tiba dengan selamat. Perjalanan yang jauh bisa ditempuh dengan mudah jika kita bisa membuat alat transportasi alias kendaraan. Kendaraan bisa bergerak kalau ada energi kinetik. Btw, kendaraan tidak mungkin bergerak dengan sendirinya karena tiba-tiba ia punya energi kinetik.

Contohnya batu. Batu tidak bisa bergerak dengan sendirinya karena tiba-tiba saja ia punya energi kinetik. Batu bisa bergerak kalau dirimu lempar. Ketika melempar batu, energi potensial kimia dalam tubuhmu berubah menjadi energi kinetik batu. Anak panah tidak mungkin tiba-tiba saja bergerak dengan sendirinya karena ia punya energi kinetik. Anak panah bisa bergerak karena tarikan busur dilepas. Ketika tarikan busur dilepas, energi potensial elastis busur berubah menjadi energi kinetik anak panah. Energi potensial elastis busur berasaldari energi potensial kimia orang yang memanah… Demikian halnya dengan kendaraan yang selalu kita gunakan, seperti mobil, sepeda motor, pesawat, bajaj, kereta api… Agar bisa bergerak maka kendaraan harus punya energi kinetik. Nah, energi kinetik kendaraan tidak mungkin muncul dengan sendirinya…Kita membutuhkan energi lain yang bisa diubah menjadi energi kinetik kendaraan. Ini hanya salah satu contoh saja…

Hampir semua energi yang kita gunakan berasal dari energi potensial kimia yang terkandung dalam minyak bumi, gas, batu bara. Btw, energi potensial kimia yang terkandung dalam minyak bumi, gas atau batu bara tidak bisa langsung digunakan. Minyak bumi, gas atau batu bara harus dibakar terlebih dahulu… Karena harus pake bakar segala, maka minyak bumi dkk biasa disebut sebagai bahan bakar. Lebih tepatnya bahan bakar fosil karena minyak bumi, gas dan batu bara berasal dari fosil makhluk hidup, baik tumbuhan atau hewan yang sudah mati dan membusuk dalam perut bumi selama beribu-ribu atau berjuta-juta tahun. Hewan atau tumbuhan punya energi potensial kimia juga. Setelah mati dan mengendap selama ribuan atau jutaan tahun, energi potensial kimia hewan atau tumbuhan berubah menjadi energi potensial kimia bahan bakar fosil…

Biasanya hasil pembakaran bahan bakar fosil (minyak bumi, gas dan batu bara) menghasilkan kalor alias panas… Kalor bisa kita gunakan secara langsung untuk memasak makanan, memanaskan ruangan. Untuk menggerakan sesuatu (misalnya menggerakkan kendaraan), kita harus mengubah kalor menjadi energi kinetik atau energi mekanik (energi mekanik = energi potensial + energi kinetik). Mengubah energi mekanik menjadi kalor adalah pekerjaan yang sangat mudah, tetapi mengubah kalor menjadi energi mekanik adalah pekerjaan sulit. Coba gosokan kedua telapak tanganmu… telapak tanganmu kepanasan khan ? Ketika kita menggosok kedua telapak tangan (kita melakukan usaha alias kerja), energi mekanik berubah menjadi kalor. Prosesnya sangat mudah… Bahkan kalor yang tak terbatas bisa dihasilkan dengan melakukan kerja. Tapi proses sebaliknya, yakni memanfaatkan kalor untuk melakukan kerja adalah pekerjaan yang sulit.

Alat yang digunakan untuk memanfaatkan kalor untuk melakukan kerja baru ditemukan pada tahun 1700. Alat yang dimaksud adalah mesin uap. Mesin uap pertama kali digunakan untuk memompa air keluar dari tambang batu bara. Perlu diketahui bahwa penggunaan mesin uap pertama terjadi sebelum para ilmuwan mengetahui bahwa kalor sebenarnya merupakan energi yang berpindah akibat adanya perbedaan suhu (hukum pertama termodinamika belum dirumuskan). Penggunaan mesin uap waktu itu mungkin didasarkan pada pengalaman sehari-hari yang menunjukkan bahwa uap bisa menggerakkan sesuatu (misalnya uap air menendang-nendang tutup panci). Mesin uap termasuk mesin kalor (mesin kalor = alat yang mengubah kalor menjadi energi mekanik). Sekarang mesin uap digunakan untuk membangkitkan energi listrik… Mesin kalor modern adalah mesin pembakaran dalam (mesin mobil, mesin sepeda motor dkk).

Gagasan dasar dibalik penggunaan mesin kalor adalah bahwa kalor bisa diubah menjadi energi mekanik hanya jika kalor dibiarkan mengalir dari tempat bersuhu tinggi menuju tempat bersuhu rendah. Selama proses ini, sebagian kalor diubah menjadi energi mekanik (sebagian kalor digunakan untuk melakukan kerja), sebagian kalor dibuang pada tempat yang bersuhu rendah. Proses perubahan bentuk energi dan perpindahan energi pada mesin kalor tampak seperti diagram di bawah…

hukum-kedua-termodinamik-16Amati diagram di atas… Suhu tinggi (TH) dan suhu rendah (TL) dikenal juga dengan julukan suhu operasi mesin (suhu = temperatur). Kalor yang mengalir dari tempat bersuhu tinggi diberi simbol QH, sedangkan kalor yang dibuang ke tempat bersuhu rendah diberi simbol QL. Ketika mengalir dari tempat bersuhu tinggi menuju tempat bersuhu rendah, sebagian QH diubah menjadi energi mekanik (digunakan untuk melakukan kerja/W), sebagian lagi dibuang sebagai QL. Sebenarnya kita sangat mengharapkan bahwa semua QH bisa diubah menjadi W, tapi pengalaman sehari-hari menunjukkan bahwa hal tersebut tidak mungkin terjadi. Selalu saja ada kalor yang terbuang. Dengan demikian, berdasarkan kekekalan energi, bisa disimpulkan bahwa QH = W + QL.

Sekarang mari kita tinjau mesin kalor yang biasa digunakan untuk mengubah kalor menjadi energi mekanik. Perlu diketahui bahwa kita hanya meninjau mesin kalor yang melakukan kerja secara terus menerus. Agar kerja bisa dilakukan secara terus menerus maka kalor harus mengalir secara terus menerus dari tempat bersuhu tinggi menuju tempat bersuhu rendah. Jika kalor hanya mengalir sekali saja maka kerja yang dilakukan mesin kalor juga hanya sekali saja (energi mekanik yang dihasilkan sangat sedikit). Dengan demikian mesin kalor tersebut tidak bisa kita manfaatkan secara optimal. Mesin kalor bisa dimanfaatkan secara optimal jika ia melakukan kerja secara terus menerus. Dengan kata lain, stok energi mekanik yang dihasilkan mesin kalor cukup banyak sehingga bisa kita gunakan untuk menggerakkan sesuatu. Daripada kelamaan dan jadi basi, lebih baik kita langsung menuju ke sasaran… Sekarang siapkan sapu tangan atau sapi kaki sebanyak-banyaknya sebelum si mesin kalor bikin dirimu kepanasan ;) Terlebih dahulu kita tinjau mesin uap. Mesin pembakaran dalam akan dibahas kemudian…

Mesin Uap

Mesin uap menggunakan uap air sebagai media penghantar kalor. Uap biasa disebut sebagai zat kerja mesin uap. Terdapat dua jenis mesin uap, yakni mesin uap tipe bolak balik dan mesin uap turbin (turbin uap). Rancangan alatnya sedikit berbeda tetapi kedua jenis mesin uap ini mempunyai kesamaan, yakni menggunakan uap yang dipanaskan oleh pembakaran minyak, gas, batu bara atau menggunakan energi nuklir.

Mesin uap tipe bolak balik

Tataplah gambar kusam di bawah dengan penuh kelembutan…

hukum-kedua-termodinamik-2

Air dalam wadah biasanya dipanaskan pada tekanan yang tinggi. Karena dipanaskan pada tekanan yang tinggi maka proses pendidihan air terjadi pada suhu yang tinggi (ingat pembahasan mengenai pendidihan – Teori kinetik gas). Biasanya air mendidih (air mendidih = air berubah menjadi uap) sekitar suhu 500 oC. Suhu berbanding lurus dengan tekanan. Semakin tinggi suhu uap, semakin besar tekanan uap. Uap bersuhu tinggi atau uap bertekanan tinggi tersebut bergerak melewati katup masukan dan memuai terhadap piston. Ketika memuai, uap mendorong piston sehingga piston meluncur ke kanan. Dalam hal ini, sebagian kalor alias panas pada uap berubah menjadi energi kinetik (uap melakukan kerja terhadap piston — W = Fs). Pada saat piston bergerak ke kanan, roda yang dihubungkan dengan piston berputar (1). Setelah melakukan setengah putaran, roda menekan piston kembali ke posisinya semula (2). Ketika piston bergerak ke kiri, katup masukan dengan sendirinya tertutup, sebaliknya katup pembuangan dengan sendirinya terbuka. Uap tersebut dikondensasi oleh kondensor sehingga berubah menjadi embun (embun = air yang berasal dari uap). Selanjutnya, air yang ada di dalam kondensor dipompa kembali ke wadah untuk dididihkan lagi. Demikian seterusnya… Karena prosesnya terjadi secara berulang-ulang maka piston bergerak ke kanan dan ke kiri secara terus menerus. Karena piston bergerak ke kanan dan ke kiri secara terus menerus maka roda pun berputar secara terus menerus. Putaran roda biasanya digunakan untuk menggerakan sesuatu…

Proses perubahan bentuk energi dan perpindahan energi pada mesin uap tipe bolak balik di atas bisa dijelaskan seperti ini : Bahan bakar fosil (batu bara/minyak/gas) memiliki energi potensial kimia. Ketika bahan bakar fosil dibakar, energi potensial kimia berubah bentuk menjadi kalor alias panas. Kalor alias panas yang diperoleh dari hasil pembakaran bahan bakar fosil digunakan untuk memanaskan air (kalor berpindah menuju air dan uap). Selanjutnya sebagian kalor pada uap berubah bentuk menjadi energi kinetik translasi piston, sebagian lagi diubah menjadi energi dalam air. Sebagian besar energi kinetik translasi piston berubah menjadi energi kinetik rotasi roda pemutar, sebagian kecil berubah menjadi kalor alias panas (kalor alias panas timbul akibat adanya gesekan antara piston dengan silinder). Jika digunakan untuk membangkitkan listrik maka energi kinetik rotasi roda pemutar bentuk menjadi energi listrik. Dan seterusnya…

Turbin uap

Pada dasarnya prinsip kerja turbin uap sama dengan mesin uap tipe bolak balik. Bedanya mesin uap tipe bolak balik menggunakan piston, sedangkan turbin uap menggunakan turbin. Pada mesin uap tipe bolak balik, kalor diubah terlebih dahulu menjadi energi kinetik translasi piston. Setelah itu energi kinetik translasi piston diubah menjadi energi kinetik rotasi roda pemutar. Nah, pada turbin uap, kalor langsung diubah menjadi energi kinetik rotasi turbin… Turbin bisa berputar akibat adanya perbedaan tekanan. Suhu uap sebelah atas bilah jauh lebih besar daripada suhu uap sebelah bawah bilah (bilah tuh lempeng tipis yang ada di tengah turbin). Ingat ya, suhu berbading lurus dengan tekanan. Karena suhu uap pada sebelah atas bilah lebih besar dari suhu uap pada sebelah bawah bilah maka tekanan uap pada sebelah atas bilah lebih besar daripada tekanan uap pada sebelah bawah bilah. Adanya perbedaan tekanan menyebabkan si uap mendorong bilah ke bawah sehingga turbin berputar. Arah putaran turbin tampak seperti gambar di bawah…

hukum-kedua-termodinamik-3

Perlu diketahui bahwa prinsip kerja mesin uap didasarkan pada diagram perpindahan energi yang telah dijelaskan di atas. Dalam hal ini, energi mekanik bisa dihasilkan apabila kita membiarkan kalor mengalir dari benda atau tempat bersuhu tinggi menuju benda atau tempat bersuhu rendah. Dengan demikian, perbedaan suhu sangat diperlukan pada mesin uap.

Btw, apabila dirimu perhatikan cara kerja mesin uap tipe bolak balik, tampak bahwa piston tetap bisa bergerak ke kanan dan ke kiri walaupun tidak ada perbedaan suhu (tidak ada kondensor dan pompa). Piston bisa bergerak ke kanan akibat adanya pemuaian uap bersuhu tinggi atau uap bertekanan tinggi. Dalam hal ini, sebagian kalor pada uap berubah menjadi energi kinetik translasi piston. Energi kinetik translasi piston kemudian berubah menjadi energi kinetik rotasi roda pemutar. Setelah melakukan setengah putaran, roda akan menekan piston kembali ke kiri. Ketika roda menekan piston kembali ke kiri, energi kinetik rotasi roda berubah lagi menjadi energi kinetik translasi piston. Ketika piston bergerak ke kiri, piston mendorong uap yang ada dalam silinder. Pada saat yang sama, katup pembuangan terbuka. Dengan demikian, uap yang didorong piston tadi akan mendorong temannya ada di sebelah bawah katup pembuangan. Nah, apabila suhu uap yang berada di sebelah bawah katup pembuangan = suhu uap yang didorong piston, maka semua energi kinetik translasi piston akan berubah lagi menjadi energi dalam uap. Energi dalam berbanding lurus dengan suhu. Kalau energi dalam uap bertambah maka suhu uap meningkat. Suhu berbanding lurus dengan tekanan. Kalau suhu uap meningkat maka tekanan uap juga meningkat. Dengan demikian, tekanan uap yang dibuang melalui katup pembuangan = tekanan uap yang masuk melalui katup masukan. Piston akan tetap bergerak ke kanan dan ke kiri seterusnya tetapi tidak akan ada energi kinetik total yang bisa dimanfaatkan (tidak ada kerja total yang dihasilkan). Jadi energi kinetik yang diterima oleh piston selama proses pemuaian (piston bergerak ke kanan) akan dikembalikan lagi kepada uap selama proses penekanan (piston bergerak ke kiri). Pahami perlahan-lahan ya… ;)

Dari penjelasan panjang lebar dan bertele-tele sebelumnya, kita bisa menyimpulkan bahwa perbedaan suhu dalam mesin uap tetap diperlukan. Perbedaan suhu dalam mesin uap bisa diperoleh dengan memanfaatkan kondensor. Ketika suhu dan tekanan uap yang berada di sebelah bawah katup pembuangan jauh lebih kecil dari pada suhu dan tekanan uap yang berada di dalam silinder, maka ketika si piston bergerak kembali ke kiri, besarnya tekanan (P = F/A) yang dilakukan piston terhadap uap jauh lebih kecil daripada besarnya tekanan yang diberikan uap kepada piston ketika si piston bergerak ke kanan. Dengan kata lain, besarnya usaha alias kerja yang dilakukan piston terhadap uap jauh lebih kecil daripada besarnya kerja yang dilakukan uap terhadap piston (W = Fs). Jadi hanya sebagian kecil energi kinetik piston yang dikembalikan lagi pada uap. Dengan demikian akan ada energi kinetik total atau kerja total yang dihasilkan. Energi kinetik total ini yang dipakai untuk menggerakan sesuatu (membangkitkan listrik dkk…) Pembangkitan energi listrik akan dibahas secara mendalam pada pokok bahasan listrik dan magnet…

Sekarang mari kita lanjutkan perjalanan menuju mesin pembakaran dalam…

Mesin Pembakaran Dalam

Mesin sepeda motor dan mesin mobil merupakan contoh mesin pembakaran dalam. Disebut mesin pembakaran dalam karena proses pembakaran terjadi di dalam silinder tertutup. Adanya mesin pembakaran dalam merupakan hasil rekayasa konsep penekanan dan pemuaian adiabatik yang sudah gurumuda jelaskan pada pokok bahasan hukum pertama termodinamika.

Pada kesempitan ini kita hanya meninjau mesin pembakaran dalam yang menggunakan bensin dan solar sebagai bahan bakar. Bensin dan solar termasuk minyak bumi, karenanya memiliki energi potensial kimia. Energi potensial kimia dalam bensin dan solar terlebih dahulu diubah menjadi kalor alias panas melalui proses pembakaran. Selanjutnya, kalor alias panas yang diperoleh melalui hasil pembakaran diubah menjadi energi mekanik. Adanya energi mekanik ini yang menyebabkan sepeda motor atau mobil bisa bergerak… Siklus pada mesin bensin disebut sebagai siklus otto, sedangkan siklus pada mesin solar disebut sebagai siklus diesel… Siklus = proses yang terjadi secara reversibel (bolak balik). Terlebih dahulu kita bahas siklus otto…

Siklus otto

Tataplah gambar aneh di bawah dengan penuh kelembutan…

hukum-kedua-termodinamik-4Ini adalah gambar mesin pembakaran dalam empat langkah alias empat tak… Mula-mula campuran udara dan uap bensin mengalir dari karburator menuju silinder pada saat piston bergerak ke bawah (langkah masukan). Selanjutnya campuran udara dan uap bensin dalam silinder ditekan secara adiabatik ketika piston bergerak ke atas (langkah kompresi alias penekanan). Karena ditekan secara adiabatik maka suhu dan tekanan campuran meningkat. Pada saat yang sama, busi memercikkan bunga api sehingga campuran udara dan uap bensin terbakar. Ketika terbakar, suhu dan tekanan gas semakin bertambah. Gas bersuhu tinggi dan bertekanan tinggi tersebut memuai terhadap piston dan mendorong piston ke bawah (langkai pemuaian). Selanjutnya gas yang terbakar dibuang melalui katup pembuangan dan dialirkan menuju pipa pembuangan (langkah pembuangan). Katup masukan terbuka lagi dan keempat langkah diulangi…

Perlu diketahui bahwa tujuan dari adanya langkah kompresi alias penekanan adiabatik adalah menaikkan suhu dan tekanan campuran udara dan uap bensin. Proses pembakaran pada tekanan yang tinggi akan menghasilkan suhu dan tekanan (P = F/A) yang sangat besar. Akibatnya gaya dorong (F = PA) yang dihasilkan selama proses pemuaian menjadi sangat besar. Mesin motor atau mobil menjadi lebih bertenaga… Walaupun tidak ditekan, campuran udara dan uap bensin bisa terbakar ketika si busi memercikkan bunga api. Tapi suhu dan tekanan gas yang terbakar tidak terlalu tinggi sehingga gaya dorong yang dihasilkan juga kecil. Akibatnya mesin menjadi kurang bertenaga…

Proses perubahan bentuk energi dan perpindahan energi pada mesin pembakaran dalam empat langkah di atas bisa dijelaskan seperti ini : Ketika terjadi proses pembakaran, energi potensial kimia dalam bensin + energi dalam udara berubah menjadi kalor alias panas. Sebagian kalor berubah menjadi energi mekanik batang piston dan poros engkol, sebagian kalor dibuang melalui pipa pembuangan (knalpot). Sebagian besar energi mekanik batang piston dan poros engkol berubah menjadi energi mekanik kendaraan (kendaraan bergerak), sebagian kecil berubah menjadi kalor alias panas… Panas timbul akibat adanya gesekan…

Proses pemuaian dan penekanan secara adiabatik pada siklus otto bisa digambarkan melalui diagram di bawah… (Diagram ini menunjukkan model ideal dari proses termodinamika yang terjadi pada mesin pembakaran dalam yang menggunakan bensin).

hukum-kedua-termodinamik-5

Campuran udara dan uap bensin masuk ke dalam silinder (a). Selanjutnya campuran udara dan uap bensin ditekan secara adiabatik (a-b). Perhatikan bahwa volume silinder berkurang… Campuran udara dan uap bensin dipanaskan pada volume konstan – campuran dibakar (b-c). Gas yang terbakar mengalami pemuaian adiabatik (c-d). Pendinginan pada volume konstan – gas yang terbakar dibuang ke pipa pembuangan dan campuran udara + uap bensin yang baru, masuk ke silinder (d-a).

Siklus Diesel

Prinsip kerja mesin diesel mirip seperti mesin bensin. Perbedaannya terletak pada langkah awal kompresi alias penekanan adiabatik (penekanan adiabatik = penekanan yang dilakukan dengan sangat cepat sehingga kalor alias panas tidak sempat mengalir menuju atau keluar dari sistem. Sistem untuk kasus ini adalah silinder). Kalau dalam mesin bensin, yang ditekan adalah campuran udara dan uap bensin, maka dalam mesin diesel yang ditekan hanya udara saja… Penekanan secara adiabatik menyebabkan suhu dan tekanan udara meningkat. Selanjutnya injector alias penyuntik menyemprotkan solar. Karena suhu dan tekanan udara sudah sangat tinggi maka ketika solar disemprotkan ke dalam silinder, si solar langsung terbakar… Tidak perlu pake busi lagi. Perhatikan besarnya tekanan yang ditunjukkan pada diagram di bawah… bandingkan dengan besarnya tekanan yang ditunjukkan pada diagram siklus otto… simpulkan sendiri ya ;)

hukum-kedua-termodinamik-6

Diagram ini menunjukkan siklus diesel ideal alias sempurna… Mula-mula udara ditekan secara adiabatik (a-b), lalu dipanaskan pada tekanan konstan – penyuntik alias injector menyemprotkan solar dan terjadilah pembakaran (b-c), gas yang terbakar mengalami pemuaian adiabatik (c-d), pendinginan pada volume konstan – gas yang terbakar dibuang ke pipa pembuangan dan udara yang baru, masuk ke silinder (d-a). Selengkapnya bisa dipelajari di dunia perteknik-otomotifan ;) Gurumuda hanya memberimu pengetahuan dasar saja.

Dari penjelasan yang bertele-tele di atas, kita bisa menyimpulkan bahwa setiap mesin kalor pada dasarnya memiliki zat kerja tertentu. Zat kerja untuk mesin uap adalah air, zat kerja untuk mesin bensin adalah udara dan uap bensin, zat kerja untuk mesin diesel adalah udara dan solar. Zat kerja biasanya menyerap kalor pada suhu yang tinggi (QH), melakukan usaha alias kerja (W), lalu membuang kalor sisa pada suhu yang lebih rendah (QL). Karena si energi kekal, maka QH = W + QL.

Efisiensi mesin kalor

Efisiensi (e) mesin kalor merupakan perbandingan antara Usaha alias Keja (W) yang dilakukan mesin dengan masukan Kalor pada suhu tinggi (QH). Secara matematis bisa ditulis seperti ini :

hukum-kedua-termodinamik-7

W merupakan keuntungan yang kita terima, sedangkan QH merupakan biaya yang kita keluarkan untuk membeli dan membakar bahan bakar. Sebagai manusia yang selalu ingin memperoleh keuntungan yang sebesar-besarnya dari pengeluaran yang sekecil-kecilnya ;) , kita sangat berharap bahwa keuntungan yang kita peroleh (W) sebanding dengan biaya yang kita keluarkan (QH). Mungkinkah itu terjadi ? Nantikan hasil pengoprekannya…

Berdasarkan kekekalan energi, Kalor masukan (QH) harus sama dengan Kerja (W) yang dilakukan + Kalor yang dibuang (QL). Secara matematis bisa diobok-obok seperti ini :

hukum-kedua-termodinamik-8

Kita gantikan W pada persamaan 1 dengan W pada persamaan 2 :

hukum-kedua-termodinamik-9

Jika ingin menyatakan efisiensi mesin kalor dalam persentase, kalikan saja persamaan efisiensi dengan 100 %.

Berdasarkan persamaan efisiensi di atas, tampak bahwa semakin banyak kalor yang dibuang (QL) oleh suatu mesin kalor, semakin tidak efisien mesin kalor tersebut (merugikan kita). Kita sangat menginginkan agar jumlah kalor yang dibuang (QL) sesedikit mungkin. Bagaimanapun kalor masukan (QH) biasanya diperoleh dengan membakar minyak, batu bara, gas dkk (bahan bakar yang kita bayar). Karenanya setiap mesin kalor pada dasarnya dirancang untuk memiliki efisiensi sebesar mungkin. Btw, walaupun kita sangat menginginkan keuntungan yang sebesar-besarnya dari pengeluaran yang sekecil-kecilnya (prinsip ekonomi-kah ?), kenyataan menunjukkan bahwa efisiensi mesin uap biasanya sekitar 40 %, sedangkan efisiensi mesin pembakaran dalam sekitar 50 %. Hal ini menunjukkan bahwa setengah bagian kalor yang diperoleh dengan membakar bahan bakar (membakar duit kita ;) ) terbuang percuma. Hanya setengah bagian saja yang berubah menjadi energi mekanik (digunakan untuk melakukan usaha alias kerja). Biar dirimu makin paham dengan penjelasan gurumuda, perhatikan contoh soal di bawah…

Entropi (Pernyataan umum hukum kedua termodinamika)

Pengantar

Dalam postingan sebelumnya kita sudah mempelajari beberapa pernyataan khusus hukum kedua termodinamika. Perlu diketahui bahwa pernyataan khusus tersebut hanya bisa menjelaskan beberapa proses ireversibel saja. Pernyataan om Clausius hanya menjelaskan perpindahan kalor dan kaitannya dengan prinsip kerja mesin pendingin. Sebaliknya pernyataan om Kelvin dan om Planck berkaitan dengan prinsip kerja mesin kalor. Walaupun tampaknya berbeda, tetapi pada dasarnya kedua pernyataan ini berhubungan dengan perpindahan kalor. Btw, masih banyakproses ireversibel lainnya tidak bisa dijelaskan menggunakan kedua pernyataan tersebut. Setelah mencium tanah, buah mangga yang lezat dan mengundang selera tidak pernah meluncur ke atas lagi. Buku yang kita dorong tidak pernah bergerak kembali ke posisinya semula. Ketika adikmu yang sangat nakal menjatuhkan gelas ke lantai hingga pecah, serpihan-serpihan gelas yang tercecer di lantai tidak pernah ngumpul lagi dan membentuk gelas hingga utuh seperti semula… Apalagi ya… masih banyak atuh. mikirin sendiri ya… hiks2… pisss…

Karena pernyataan khusus hukum kedua termodinamika tidak bisa menjelaskan semua proses ireversibel maka kita membutuhkan pernyataan yang lebih umum. Adanya pernyataan umum ini diharapkan bisa menjelaskan semua proses ireversibel yang terjadi di alam semesta. Pernyataan umum hukum kedua termodinamika baru dirumuskan pada pertengahan abad kesembilan belas, melalui sebuah besaranyang diberi julukan entropi (S). Entropi bisa dianggap sebagai ukuran kuantitatif dari ketidakteraturan. Mengenai hal ini akan dibahas kemudian… Besaran entropi pertama kali diperkenalkan oleh om Clausius dan diturunkan dari siklus om Carnot (mesin kalor sempurna). Menurut om Clausius, besarnya perubahan entropiyang dialami oleh suatu sistem, ketika sistem tersebut mendapat tambahan kalor (Q) pada suhu tetap dinyatakan melalui persamaan di bawah :

entropi-a

Keterangan :

Delta S = Perubahan entropi (Joule/Kelvin)

Q = Kalor (Joule)

T = Suhu (Kelvin)

Entropi merupakan besaran yang menyatakan keadaan mikroskopis sistem, karenanya tidak bisa diketahui secara langsung. Yang kita tinjau hanya perubahan entropi saja… Mirip seperti perubahan energi dalam pada hukum pertama termodinamika.

Untuk membantumu lebih memahami pembahasan ini, kita obok-obok latihan soal saja :

Hukum ketiga termodinamika

Hukum ketiga termodinamika merupakan hukum fisika yang jablai ;) Kurang populer karena jarang dibelai… Daripada hukum ketiga termodinamika menjadi jablai, alangkah baiknya jika gurumuda bahas saja, biar dirimu bisa membelainya…

Hukum ketiga termodinamika mengatakan bahwa mencapai suhu nol mutlak (0 K) adalah hal yang tidak mungkin terjadi. Untuk mengetahui alasan mengapa suhu nol mutlak tidak bisa dicapai, silahkan pelajari lagi materi teori kinetik gas… ulasannya sudah disertakan dalam pokok bahasan tersebut. Download saja di halaman ebook gratis…

Sekian dan sampai jumpa lagi pada episode berikutnya… Ini adalah pokok bahasan terpendek yang pernah kutulis :)

GAS IDEAL

Hukum gas ideal (persamaan keadaan gas ideal)

gas-ideal

Pengantar

Pada pembahasan sebelumnya (hukum-hukum gas – persamaan keadaan) gurumuda sudah menjelaskan secara panjang pendek mengenai hukum om Boyle, hukum om Charles dan hukum om Gay-Lussac. Ketiga hukum gas ini baru menjelaskan hubungan antara suhu, volume dan tekanan gas secara terpisah. Hukum om obet Boyle hanya menjelaskan hubungan antara Tekanan dan volume gas. Hukum om Charles hanya menjelaskan hubungan antara volume dan suhu gas. Hukum om Gay-Lussac hanya menjelaskan hubungan antara suhu dan tekanan gas. Perlu diketahui bahwa ketiga hukum ini hanya berlaku untuk gas yang memiliki tekanan dan massa jenis yang tidak terlalu besar. Ketiga hukum ini juga hanya berlaku untuk gas yang suhunya tidak mendekati titik didih. Oya, yang dimaksudkan dengan gas di sini adalah gas yang ada dalam kehidupan kita sehari-hari. Istilah kerennya gas riil alias gas nyata… misalnya oksigen, nitrogen dkk…

Karena hukum om obet Boyle, hukum om Charles dan hukum om Gay-Lussac tidak berlaku untuk semua kondisi gas maka analisis kita akan menjadi lebih sulit. Untuk mengatasi hal ini (maksudnya untuk mempermudah analisis), kita bisa membuat suatu model gas ideal alias gas sempurna. Gas ideal tidak ada dalam kehidupan sehari-hari; yang ada dalam kehidupan sehari-hari cuma gas riil alias gas nyata. Gas ideal cuma bentuk sempurna yang sengaja kita buat untuk mempermudah analisis, mirip seperti konsep benda tegar atau fluida ideal. Ilmu fisika tuh aneh-aneh…. dari pada bikin ribet dan pusink sendiri lebih baik cari saja pendekatan yang lebih mudah ;) Kita bisa menganggap hukum Boyle, hukum Charles dan hukum Gay-Lusac berlaku pada semua kondisi gas ideal, baik ketika tekanan dan massa jenis gas sangat tinggi atau suhu gas mendekati titik didih. Adanya konsep gas ideal ini juga sangat membantu kita dalam meninjau hubungan antara ketiga hukum gas tersebut.

Biar dirimu lebih nyambung, gurumuda tulis kembali penyataan hukum Boyle, hukum Charles dan hukum Gay-Lussac.

Hukum Boyle

Berdasarkan percobaan yang dilakukannya, om Robert Boyle menemukan bahwa apabila suhu gas dijaga agar selalu konstan, maka ketika tekanan gas bertambah, volume gas semakin berkurang. Demikian juga sebaliknya ketika tekanan gas berkurang, volume gas semakin bertambah. Istilah kerennya tekanan gas berbanding terbalik dengan volume gas. Hubungan ini dikenal dengan julukan Hukum Boyle. Secara matematis ditulis sebagai berikut :

hukum-gas-ideal-aKeterangan :

hukum-gas-ideal-b

Hukum Charles

Seratus tahun setelah om Obet Boyle menemukan hubungan antara volume dan tekanan, seorang ilmuwan berkebangsaan Perancis yang bernama om Jacques Charles (1746-1823) menyelidiki hubungan antara suhu dan volume gas. Berdasarkan hasil percobaannya, om Cale menemukan bahwa apabila tekanan gas dijaga agar selalu konstan, maka ketika suhu mutlak gas bertambah, volume gas pun ikt2an bertambah, sebaliknya ketika suhu mutlak gas berkurang, volume gas juga ikut2an berkurang. Hubungan ini dikenal dengan julukan hukum Charles. Secara matematis ditulis sebagai berikut :

hukum-gas-ideal-c

Hukum Gay-Lussac

Setelah om obet Boyle dan om Charles mengabadikan namanya dalam ilmu fisika, om Joseph Gay-Lussac pun tak mau ketinggalan. Berdasarkan percobaan yang dilakukannya, om Jose menemukan bahwa apabila volume gas dijaga agar selalu konstan, maka ketika tekanan gas bertambah, suhu mutlak gas pun ikut2an bertambah. Demikian juga sebaliknya ketika tekanan gas berkurang, suhu mutlak gas pun ikut2an berkurang. Istilah kerennya, pada volume konstan, tekanan gas berbanding lurus dengan suhu mutlak gas. Hubungan ini dikenal dengan julukan Hukum Gay-Lussac. Secara matematis ditulis sebagai berikut :

hukum-gas-ideal-d

Hubungan antara suhu, volume dan tekanan gas

Hukum Boyle, hukum Charles dan hukum Gay-Lussac baru menurunkan hubungan antara suhu, volume dan tekanan gas secara terpisah. Bagaimanapun ketiga besaran ini memiliki keterkaitan erat dan saling mempengaruhi. Karenanya, dengan berpedoman pada ketiga hukum gas di atas, kita bisa menurunkan hubungan yang lebih umum antara suhu, volume dan tekanan gas. Gurumuda tulis lagi ketiga perbandingan di atas biar dirimu lebih nyambung :

hukum-gas-ideal-e

Jika perbandingan 1, perbandingan 2 dan perbandingan 3 digabung menjadi satu, maka akan tampak seperti ini :

hukum-gas-ideal-fPersamaan ini menyatakan bahwa tekanan (P) dan volume (V) sebanding dengan suhu mutlak (T). Sebaliknya, volume (V) berbanding terbalik dengan tekanan (P).

Perbandingan 4 bisa dioprek menjadi persamaan :

hukum-gas-ideal-g

Keterangan :

P1 = tekanan awal (Pa atau N/m2)

P2 = tekanan akhir (Pa atau N/m2)

V1 = volume awal (m3)

V2 = volume akhir (m3)

T1 = suhu awal (K)

T2 = suhu akhir (K)

(Pa = pascal, N = Newton, m2 = meter kuadrat, m3 = meter kubik, K = Kelvin)

Contoh soal ada di bagian akhir tulisan ini… Tuh di bawah

Hubungan antara massa gas (m) dengan volume (V)

Sejauh ini kita baru meninjau hubungan antara suhu, volume dan tekanan gas. Massa gas masih diabaikan… Kok gas punya massa ya ? yupz… Setiap zat alias materi, termasuk zat gas terdiri dari atom-atom atau molekul-molekul. Karena atom atau molekul mempunyaimassa maka tentu saja gas juga mempunyai massa. Kalau dirimu bingung, silahkan pelajari lagi materi Teori atom dan Teori kinetik.

Pernah meniup balon ? ketika dirimu meniup balon, semakin banyak udara yang dimasukkan, semakin kembung balon tersebut. Dengan kata lain, semakin besarmassa gas, semakin besar volume balon. Kita bisa mengatakan bahwa massa gas (m) sebanding alias berbanding lurus dengan volume gas (V). Secara matematis ditulis seperti ini :

hukum-gas-ideal-hJika perbandingan 4 digabung dengan perbandingan 5 maka akan tampak seperti ini :

hukum-gas-ideal-i

Jumlah mol (n)

Sebelum melangkah lebih jauh, terlebih dahulu kita bahas konsep mol. Dari pada kelamaan, kita langsung ke sasaran saja… 1 mol = besarnya massa suatu zat yang setara dengan massa molekul zat tersebut. Massa dan massa molekul tuh beda. Biar paham, amati contoh di bawah…

Contoh 1, massa molekul gas Oksigen (O2) = 16 u + 16 u = 32 u (setiap molekul oksigen berisi 2 atom Oksigen, di mana masing-masing atom Oksigen mempunyai massa 16 u). Dengan demikian, 1 mol O2 mempunyai massa 32 gram. Atau massa molekul O2 = 32 gram/mol = 32 kg/kmol

Contoh 2, massa molekul gas karbon monooksida (CO) = 12 u + 16 u = 28 u (setiap molekul karbon monooksida berisi 1 atom karbon (C) dan 1 atom oksigen (O). Massa 1 atom karbon = 12 u dan massa 1 atom Oksigen = 16 u. 12 u + 16 u = 28 u). Dengan demikian, 1 mol CO mempunyai massa 28 gram. Atau massa molekul CO = 28 gram/mol = 28 kg/kmol

Contoh 3, massa molekul gas karbon dioksida (CO2) = [12 u + (2 x 16 u)] = [12 u + 32 u] = 44 u (setiap molekul karbon dioksida berisi 1 atom karbon (C) dan 2 atom oksigen (O). Massa 1 atom Carbon = 12 u dan massa 1 atom oksigen = 16 u). Dengan demikian, 1 mol CO2 mempunyai massa 44 gram. Atau massa molekul CO2 = 44 gram/mol = 44 kg/kmol.

Sebelumnya kita baru membahas definisi satu mol. Sekarang giliran jumlah mol (n). Pada umumnya, jumlah mol (n) suatu zat = perbandinganmassa zat tersebut dengan massa molekulnya. Secara matematis ditulis seperti ini :

hukum-gas-ideal-j1

Contoh 1 : hitung jumlah mol pada 64 gram O2

Massa O2 = 64 gram

Massa molekul O2 = 32 gram/mol

hukum-gas-ideal-k

Contoh 2 : hitung jumlah mol pada 280 gram CO

Massa CO = 280 gram

Massa molekul CO = 28 gram/mol

hukum-gas-ideal-l

Contoh 3 : hitung jumlah mol pada 176 gram CO2

Massa CO2 = 176 gram

Massa molekul CO2 = 44 gram/mol

hukum-gas-ideal-m

Konstanta gas universal (R)

Perbandingan yang sudah diturunkan di atas (perbandingan 6) bisa diubah menjadi persamaan dengan menambahkan konstanta perbandingan. Btw, berdasarkan penelitian yang dilakukan om-om ilmuwan, ditemukan bahwa apabila kita menggunakan jumlah mol (n) untuk menyatakan ukuran suatu zat maka konstanta perbandingan untuk setiap gas memiliki besar yang sama. Konstanta perbandingan yang dimaksud adalah konstanta gas universal (R). Universal = umum, jangan pake bingung…

R = 8,315 J/mol.K

= 8315 kJ/kmol.K

= 0,0821 (L.atm) / (mol.K)

= 1,99 kal / mol. K

(J = Joule, K = Kelvin, L = liter, atm = atmosfir, kal = kalori)

HUKUM GAS IDEAL (dalam jumlah mol)

Setelah terseok-seok, akhirnya kita tiba di penghujung acara pengoprekan rumus. Perbandingan 6 (tuh di atas) bisa kita tulis menjadi persamaan, dengan memasukan jumlah mol (n) dan konstanta gasuniversal (R)…

PV = nRT

Persamaan ini dikenal dengan julukan hukum gas ideal alias persamaan keadaan gas ideal.

Keterangan :

P = tekanan gas (N/m2)

V = volume gas (m3)

n = jumlah mol (mol)

R = konstanta gas universal (R = 8,315 J/mol.K)

T = suhu mutlak gas (K)

CATATAN :

Pertama, dalam penyelesaian soal, dirimu akan menemukan istilah STP. STP tuh singkatan dari Standard Temperature and Pressure. Bahasanya orang bule… Kalau diterjemahkan ke dalam bahasa orang Indonesia, STP artinya Temperatur dan Tekanan Standar. Temperatur = suhu.

Temperatur standar (T) = 0 oC = 273 K

Tekanan standar (P) = 1 atm = 1,013 x 105 N/m2 = 1,013 x 102 kPa = 101 kPa

Kedua, dalam menyelesaikan soal-soal hukum gas, suhu alias temperatur harus dinyatakan dalam skala Kelvin (K)

Ketiga, apabila tekanan gas masih berupa tekanan ukur, ubah terlebih dahulu menjadi tekanan absolut. Tekanan absolut = tekanan atmosfir + tekanan ukur (tekanan atmosfir = tekanan udara luar)

Keempat, jika yang diketahui adalah tekanan atmosfir (tidak ada tekanan ukur), langsung oprek saja tuh soal.

Benda Tegar

1. Dinamika Rotasi Benda Tegar

sebuah benda tegar bergerak rotasi murni jika setiap partikel pada benda tersebut bergerak dalam lingkaran yang pusatnya terletak pada garis lurus yang disebut sumbu rotasi.

2. Titik Berat Benda Tegar

Telah dikatakan sebelumnya bahwa suatu benda tegar dapat mengalami gerak translasi (gerak

lurus) dan gerak rotasi. Benda tegar akan melakukan gerak translasi apabila gaya yang

diberikan pada benda tepat mengenai suatu titik yang yang disebut titik berat

Titik berat merupakan titik dimana benda akan berada dalam keseimbangan rotasi (tidak mengalami rotasi). Pada saat benda tegar mengalami gerak translasi dan rotasi sekaligus, maka pada saat itu titik berat akan bertindak sebagai sumbu rotasi dan lintasan gerak dari titik berat ini menggambarkan lintasan gerak translasinya.

Mari kita tinjau suatu benda tegar, misalnya tongkat pemukul kasti, kemudian kita lempar sambil sedikit berputar. Kalau kita perhatikan secara aeksama, gerakan tongkat pemukul tadi dapat kita gambarkan seperti membentuk suatu lintasan dari gerak translasi yang sedang dijalani dimana pada kasus ini lintasannya berbentuk parabola. Tongkat ini memang berputar pada porosnya, yaitu tepat di titik beratnya. Dan, secara keseluruhan benda bergerak dalam lintasan parabola. Lintasan ini merupakan lintasan dari posisi titik berat benda tersebut.

Demikian halnya seorang peloncat indah yang sedang terjun ke kolam renang. Dia melakukan gerak berputar saat terjun. sebagaimana tongkat pada contoh di atas, peloncat indah itu juga menjalani gerak parabola yang bisa dilihat dari lintasan titik beratnya. Perhatikan gambar berikut ini.

Jadi, lintasan gerak translasi dari benda tegar dapat ditinjau sebagai lintasan dari letak titik berat benda tersebut. Dari peristiwa ini tampak bahwa peranan titik berat begitu penting dalam menggambarkan gerak benda tegar.

Cara untuk mengetahui letak titik berat suatu benda tegar akan menjadi mudah untuk benda-benda yang memiliki simetri tertentu, misalnya segitiga, kubus, balok, bujur sangkar, bola dan lain-lain. Yaitu d sama dengan letak sumbu simetrinya. Hal ini jelas terlihat pada contoh diatas bahwa letak titik berat sama dengan sumbu rotasi yang tidak lain adalah sumbu simetrinya.

Di sisi lain untuk benda-benda yang mempunyai bentuk sembarang letak titik berat dicari dengan perhitungan. Perhitungan didasarkan pada asumsi bahwa kita dapat mengambil beberapa titik dari benda yang ingin dihitung titik beratnya dikalikan dengan berat di masing-masing titik kemudian dijumlahkan dan dibagi dengan jumlah berat pada tiap-tiap titik. dikatakan titik berat juga merupakan pusat massa di dekat permukaan bumi, namun untuk tempat yang ketinggiannya tertentu di atas bumi titik berat dan pusat massa harus dibedakan.

3, Keserimbangan benda tegar

Sebuah benda bisa bergerak lurus jika gaya yang dikerjakan pada benda itu lebih besar daripada gaya hambat (gaya gesekan). Selisih antara gaya yang dikerjakan pada benda dengan gaya gesekan disebut gaya total. Jadi yang membuat benda bisa bergerak lurus adalah gaya total. Mengenai hal ini sudah kita pelajari dalam hukum II Newton (Dinamika).
Selain melakukan gerak lurus, benda juga bisa melakukan gerak rotasi. Benda yang melakukan gerak rotasi disebabkan oleh adanya Torsi. Jika torsi yang dikerjakan pada benda yang diam lebih besar dari torsi yang menghambat, maka benda akan berputar alias berotasi. Dalam hal ini selisih antara torsi yang dikerjakan pada benda dengan torsi yang menghambat disebut torsi total. Jadi sebenarnya yang membuat benda berotasi adalah torsi total. Torsi = gaya x lengan gaya. Ketika kita memberikan torsi pada sebuah benda, sebenarnya kita memberikan gaya pada benda itu, tapi gaya itu dikalikan juga dengan panjang lengan gaya.

Misalnya beton yang digunakan untuk membangun jembatan bisa bengkok,
bahkan patah jika dikenai gaya berat yang besar (ada kendaraan raksasa yang lewat di atasnya) Derek bisa patah jika beban yang diangkat melebihi kapasitasnya. Mobil bisa bungkuk kalau gaya berat penumpang melebihi kapasitasnya. Dalam hal ini benda‐benda itu mengalami perubahan bentuk. Jika bentuk benda berubah, maka jarak antara setiap bagian pada benda itu tentu saja berubah alias benda menjadi tidak tegar lagi. Untuk menghindari hal ini, maka kita perlu mempelajari faktor‐faktor apa saja yang dibutuhkan agar sebuah benda tetap tegar

Rabu, 17 Maret 2010

fluida

Dinamika fluida
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari

Dinamika fluida adalah subdisiplin dari mekanika fluida yang mempelajari fluida bergerak. Fluida terutama cairan dan gas. Penyelsaian dari masalah dinamika fluida biasanya melibatkan perhitungan banyak properti dari fluida, seperti kecepatan, tekanan, kepadatan, dan suhu, sebagai fungsi ruang dan waktu. Disiplini ini memiliki beberapa subdisiplin termasuk aerodinamika (penelitian gas) dan hidrodinamika (penelitian cairan). Dinamika fluida memliki aplikasi yang luas. Contohnya, ia digunakan dalam menghitung gaya dan moment pada pesawat, mass flow rate dari petroleum dalam jalur pipa, dan perkiraan pola cuaca, dan bahkan teknik lalu lintas, di mana lalu lintas diperlakukan sebagai fluid yang berkelanjutan. Dinamika fluida menawarkan struktur matematika yang membawahi disiplin praktis tersebut yang juga seringkali memerlukan hukum empirik dan semi-empirik, diturunkan dari pengukuran arus, untuk menyelesaikan masalah praktikal.

Fluida Dinamis
Fisika Kelas 1 > Fluida Dan Kalor
277

Sifat Fluida Ideal:

- tidak dapat ditekan (volume tetap karena tekanan)
- dapat berpindah tanpa mengalami gesekan
- mempunyai aliran stasioner (garis alirnya tetap bagi setiap partikel)
- kecepatan partikel-partikelnya sama pada penampang yang sama

HUKUM BERNOULLI

Hukum ini diterapkan pada zat cair yang mengalir dengan kecepatan berbeda dalam suatu pipa.

P + r g Y + 1/2 r v2 = c

P = tekanan
1/2 r v2 = Energi kinetik
r g y = Energi potensial

]® tiap satuan
waktu

CEPAT ALIRAN (DEBIT AIR)

Cepat aliran (Q) adalah volume fluida yang dipindahkan tiap satuan waktu.

Q = A . v

A1 . v1 = A2 . v2

v = kecepatan fluida (m/det)
A = luas penampang yang dilalui fluida

Untuk zat cair yang mengalir melalui sebuah lubang pada tangki, maka besar kecepatannya selalu dapat diturunkan dari Hukum Bernoulli, yaitu:
v = Ö(2gh)

h = kedalaman lubang dari permukaan zat cair

Contoh:

1. Sebuah kolam air berdinding bujursangkar dengan panjang 15 m, tingginya 7,5m.Tentukanlah tekanan air 4,5 m di bawah permukaan air!

Jawab:

P = r . g . h = 103 . 10 . 4,5
P = 4,5.104 N/m2

2. Air mengalir sepanjang pipa horisontal, penampang tidak sama besar. Pada tempat dengan kecepatan air 35 cm/det tekanannya adalah 1 cmHg. Tentukanlah tekanan pada bagian pipa dimana kecepatan aliran airnya 65 cm/det.(g = 980 cm/det2) !

Jawab:

P1 = 1 cmHg = 1.13,6.980 dyne/cm2
P1 = 13328 dyne/cm2

v1 = 35 cm/det; v2 = 65 cm/det

Prinsip Bernoulli:
P1 + pgy1 + 1/2rv12 = P2 + rgy2 + 1/2rv22

Karena y1 = y2 (pipa horisontal), maka:

P1 - P2 = 1/2 r (V22 - V12)
P1 - P2 = 1/2 1 (652 352)
P1 - P2 = 1/2 3000
P1 - P2 = 1500 dyne/cm2

Jadi:

P2 = P1 - 1500
P2 = 13328 - 1500
P2 = 11828 dyne/cm
P2 = 0,87 cmHg

Fluida Statis
Fisika Kelas 1 > Fluida Dan Kalor
276

Fluida ( zat alir ) adalah zat yang dapat mengalir, misalnya zat cair dan gas. Fluida dapat digolongkan dalam dua macam, yaitu fluida statis dan dinamis.

TEKANAN HIDROSTATIS

Tekanan hidrostatis ( Ph) adalah tekanan yang dilakukan zat cair pada bidang dasar tempatnya.

PARADOKS HIDROSTATIS

Gaya yang bekerja pada dasar sebuah bejana tidak tergantung pada bentuk bejana dan jumlah zat cair dalam bejana, tetapi tergantung pada luas dasar bejana ( A ), tinggi ( h ) dan massa jenis zat cair ( r )
dalam bejana.
Ph = r g h
Pt = Po + Ph
F = P h A = r g V r = massa jenis zat cair
h = tinggi zat cair dari permukaan
g = percepatan gravitasi
Pt = tekanan total
Po = tekanan udara luar

HUKUM PASCAL

Tekanan yang dilakukan pada zat cair akan diteruskan ke semua arah sama.

P1 = P2 ® F1/A1 = F2/A2

HUKUM ARCHIMEDES

Benda di dalam zat cair akan mengalami pengurangan berat sebesar berat zat cair yang dipindahkan.

Tiga keadaan benda di dalam zat cair:
a. tenggelam: W>Fa Þ rb > rz

b. melayang: W = Fa Þ rb = rz

c. terapung: W=Fa Þ rb.V=rz.V’ ; rb

W = berat benda
Fa = gaya ke atas = rz . V’ . g
rb = massa jenis benda
rz = massa jenis fluida
V = volume benda
V’ = volume benda yang berada dalam fluida

Akibat adanya gaya ke atas ( Fa ), berat benda di dalam zat cair (Wz) akan berkurang menjadi:

Wz = W - Fa

Wz = berat benda di dalam zat cair

TEGANGAN PERMUKAAN

Tegangan permukaan ( g) adalah besar gaya ( F ) yang dialami pada permukaan zat cair persatuan panjang(l)

g = F / 2l

KAPILARITAS

Kapilaritas ialah gejala naik atau turunnya zat cair ( y ) dalam tabung kapiler yang dimasukkan sebagian ke dalam zat cair karena pengarah adhesi dan kohesi.

y = 2 g cos q / r g r

y = kenaikan/penurunan zat cair pada pipa (m)
g = tegangan permukaan (N/m)
q = sudut kontak (derajat)
p = massa jenis zat cair (kg / m3)
g = percepatan gravitas (m / det2)
r = jari-jari tabung kapiler (m)

keseimbangan benda tegar

PENGANTAR KESEIMBANGAN BENDA TEGAR

Sejauh ini kita sudah mempelajari dan menganalisis benda-benda yang bergerak. Setiap benda yang bergerak tentu saja punya kecepatan. Jika benda melakukan gerak lurus, benda itu punya kecepatan linear atau biasa disingkat kecepatan. Sedangkan benda yang melakukan gerak rotasi punya kecepatan sudut. Btw, benda yang diam tidak mungkin tiba-tiba saja bergerak, pasti ada penyebab yang membuat benda itu bergerak. Demikian juga benda yang sedang bergerak tidak mungkin tiba-tiba berhenti tanpa penyebab. Dalam fisika, penyebab gerakan benda itu dikenal dengan julukan gaya. Sebuah benda bisa bergerak lurus jika gaya yang dikerjakan pada benda itu lebih besar daripada gaya hambat (gaya gesekan). Selisih antara gaya yang dikerjakan pada benda dengan gaya gesekan disebut gaya total. Jadi yang membuat benda bisa bergerak lurus adalah gaya total. Mengenai hal ini sudah kita pelajari dalam hukum II Newton (Dinamika).

Selain melakukan gerak lurus, benda juga bisa melakukan gerak rotasi. Benda yang melakukan gerak rotasi disebabkan oleh adanya Torsi. Jika torsi yang dikerjakan pada benda yang diam lebih besar dari torsi yang menghambat, maka benda akan berputar alias berotasi. Dalam hal ini selisih antara torsi yang dikerjakan pada benda dengan torsi yang menghambat disebut torsi total. Jadi sebenarnya yang membuat benda berotasi adalah torsi total. Torsi = gaya x lengan gaya. Ketika kita memberikan torsi pada sebuah benda, sebenarnya kita memberikan gaya pada benda itu, tapi gaya itu dikalikan juga dengan panjang lengan gaya. Terus torsi yang menghambat tuh maksudnya bagaimana-kah ? Torsi yang menghambat disebabkan oleh adanya gaya gesekan. Lebih tepatnya torsi yang menghambat = hasil kali gaya gesekan denga panjang lengan gaya. Begitu….

Gurumuda mengulas lagi konsep-konsep dinamika dan dinamika rotasi secara panjang pendek di atas, biar dirimu mengenang kembali konsep2 itu. Konsep gaya total dan torsi total perlu dipahami dengan baik sehingga bisa membantu kita lebih nyambung dengan pokok bahasan keseimbangan benda tegar.

Dalam kehidupan sehari-hari, tidak semua benda yang dijumpai selalu bergerak. Sebelum bergerak, benda pasti diam, demikian juga setelah bergerak, mungkin benda akan berhenti. Di samping itu, ada juga benda yang selalu diam atau dirancang untuk tetap diam. Kalau bergerak malah bisa menyebabkan malapetaka. Salah satu contoh sederhana adalah jembatan dkk. Jembatan yang tidak dirancang dengan baik akan ikut2an bergerak alias roboh jika tidak mampu menahan beban kendaraan yang lewat di atas jembatan tersebut. Dirimu dan diriku akan ikut2an terjun bebas kalau lewat di jembatan seperti itu… Gedung yang tidak dirancang dengan baik juga akan langsung roboh jika diguncang gempa bumi berskala kecil atau besar. Syukur kalau ada gempa bumi baru roboh, angin niup dikit aja gedungnya ikut2an dangdutan khan repot juga… masih banyak contoh lain…

Konsep keseimbangan benda tegar merupakan pengetahuan dasar yang sangat penting dan mempunyai banyak penerapan dalam kehidupan sehari-hari, khususnya bidang teknik. Kalau pingin kuliah bagian teknik arsitek, teknik mesin atau teknik sipil kayanya dirimu perlu belajar pokok bahasan ini dengan sungguh-sungguh… kalau teknik pertubuhan (maksudnya kedokteran :D), gak tahu perlu apa tidak. Belajar saja, siapa tahu bermanfaat juga di kemudian hari… potong memotong tubuh juga perlu pisau bukan ? pisau itu juga termasuk benda tegar.. he2… Ingin jadi sopir taxi ? perlu belajar keseimbangan benda tegar juga, biar mobil tidak berguling ria di jalan yang miring.

Dalam pembahasan ini, kita tetap menganggap benda sebagai benda tegar. Benda tegar tuh cuma bentuk ideal yang kita pakai untuk menggambarkan suatu benda. Suatu benda disebut sebagai benda tegar jika jarak antara setiap bagian benda itu selalu sama. Dalam hal ini, setiap benda bisa kita anggap tersusun dari partikel-partikel atau titik-titik, di mana jarak antara setiap titik yang tersebar di seluruh bagian benda selalu sama. Oya, lupa… benda tegar = benda kaku.

Dalam kenyataannya, setiap benda bisa berubah bentuk (menjadi tidak tegar), jika pada benda itu dikenai gaya atau torsi. Misalnya beton yang digunakan untuk membangun jembatan bisa bengkok, bahkan patah jika dikenai gaya berat yang besar (ada kendaraan raksasa yang lewat di atasnya) :DDerek bisa patah jika beban yang diangkat melebihi kapasitasnya. Mobil bisa bungkuk kalau gaya berat penumpang melebihi kapasitasnya. Dalam hal ini benda-benda itu mengalami perubahan bentuk. Jika bentuk benda berubah, maka jarak antara setiap bagian pada benda itu tentu saja berubah alias benda menjadi tidak tegar lagi. Untuk menghindari hal ini, maka kita perlu mempelajari faktor-faktor apa saja yang dibutuhkan agar sebuah benda tetap tegar.

Dalam merancang sesuatu, para ahli teknik biasanya memperhitungkan hal ini secara saksama. Para ahli perteknikan biasanya menganggap bentuk benda tetap tegar jika benda itu dikenai gaya atau torsi. Mereka juga memperhitungkan faktor elastisitas bahan (Ingat hukum hooke dan elastisitas) dan memperkirakan secara saksama gaya dan torsi maksimum agar benda tetap tegar. Demikian juga para ahli teknik pertubuhan (dokter). Pengetahuan dan pemahaman yang baik dan benar mengenai gaya pada otot dan sendi sangat membantu pasiennya untuk merayakan ulang tahun lagi, mempunyai gigi yang rapi walaupun harus dipagari dengan kawat dulu dkk…..

Dari balik blog, gurumuda mengucapkan selamat belajar… semoga tiba dengan selamat di tempat tujuan :D

Syarat-syarat keseimbangan Statis

Pengantar

Seperti manusia yang kadang suka jalan-jalan, kadang tidur alias diam, demikian juga benda. Benda juga suka jalan-jalan alias bergerak, kadang lagi malas, benda juga pingin diam ;D Bedanya, manusia bisa bergerak sendiri, kalau benda harus digerakkan. Demikian juga benda yang bergerak bisa berhenti kalau dihentikan, sedangkan manusia semaunya saja ;)Pada kesempatan ini kita akan mengulas faktor-faktor apa saja yang menyebabkan benda menjadi malas bergerak alias tetap diam. Istilah kerennya benda berada dalam keseimbangan statis (statis = diam). Selamat belajar ya, semoga dirimu tidak ikut2an malas bergerak alias pingin diam terus, repot juga… nanti dikirain… kaburrrrr ;D

Statika

Sebelum melangkah lebih jauh, alangkah baiknya jika kita bahas statika terlebih dahulu. Statika tuh ilmu fisika yang mempelajari gaya yang bekerja pada sebuah benda yang diam (Benda berada dalam kesetimbangan statis). Misalnya batu yang diam di atas permukaan tanah, mobil yang lagi parkir di jalan atau garasi, kereta api yang lagi mangkal di stasiun, pesawat yang lagi baring-baring di bandara dll.

Ketika sebuah benda diam, tidak berarti tidak ada gaya yang bekerja pada benda itu. Minimal ada gaya gravitasi bumi yang bekerja pada benda tersebut (arah gaya gravitasi menuju pusat bumi alias ke bawah). Jika ada gaya gravitasi, seharusnya benda bergerak dunk…. Kok bisa diam ya ? eyang Newton dalam hukum II Newton mengatakan bahwa jika terdapat gaya total yang bekerja pada sebuah benda maka benda itu akan mengalami percepatan alias bergerak lurus. Ketika sebuah benda diam, gaya total = 0. Pasti ada gaya lain yang mengimbangi gaya gravitasi, sehingga gaya total = 0. Gaya apakah itu ? wah gawat kalau dirimu sudah melupakannya… musuh bebuyutan gaya gravitasi adalah gaya normal. Untuk memudahkan pemahamanmu, gurumuda pakai gambar saja ya…

Misalnya terdapat sebuah benda yang terletak di atas permukaan meja. Benda ini sedang diam. Pada benda bekerja gaya berat (w) yang arahnya tegak lurus ke bawah alias menuju pusat bumi. Gaya berat tuh gaya gravitasi yang bekerja pada benda. Gaya yang mengimbangi gaya gravitasi adalah gaya Normal (N). Arah gaya normal tegak lurus ke atas, berlawanan dengan arah gaya gravitasi. Besar gaya normal = besar gaya gravitasi, sehingga gaya total = 0. Ingat ya, kedua gaya ini bukan aksi reaksi karena gaya gravitasi dan gaya normal bekerja pada benda yang sama. Dua gaya disebut aksi reaksi jika bekerja pada benda yang berbeda.

Benda dalam ilustrasi di atas dikatakan berada dalam keseimbangan statis. Pemahaman dan perhitungan mengenai gaya-gaya yang bekerja pada benda yang berada dalam keadaan seimbang sangat penting, khususnya bagi para ahli perteknikan (arsitek dan insinyur). Dalam merancang sesuatu, baik gedung, jembatan, kendaraan, dll, para arsitek dan insinyur juga memperhitungkan secara saksama, apakah struktur suatu bangunan, kendaraan, dll, mampu menahan gaya-gaya tersebut. Benda sekuat apapun bisa mengalami perubahan bentuk (bengkok) atau bahkan bisa patah jika gaya yang bekerja pada benda terlalu besar.

Syarat-syarat keseimbangan

Sekarang mari kita melangkah lebih jauh. Kali ini kita mencoba melihat faktor-faktor apa saja yang membuat benda tetap dalam keadaan diam.

Syarat pertama

Dalam hukum II Newton, kita belajar bahwa jika terdapat gaya total yang bekerja pada sebuah benda (benda dianggap sebagai partikel tunggal), maka benda akan bergerak lurus, di mana arah gerakan benda = arah gaya total. Kita bisa menyimpulkan bahwa untuk membuat sebuah benda diam, maka gaya total harus = 0. Gaya total = Jumlah semua gaya yang bekerja pada benda.

Secara matematis bisa kita tulis seperti ini :

Persamaan Hukum II Newton :

Ketika sebuah benda diam, benda tidak punya percepatan (a). Karena percepatan (a) = 0, maka persamaan di atas berubah menjadi :

Jika gaya-gaya bekerja pada arah horisontal saja (satu dimensi), maka kita cukup menggunakan persamaan 1. Huruf x menunjuk sumbu horisontal pada koordinat kartesius (koordinat x, y, z). Jika gaya-gaya bekerja pada arah vertikal saja (satu dimensi), maka kita cukup menggunakan persamaan 2. Huruf y menunjuk sumbu vertikal pada koordinat kartesius.

Apabila gaya-gaya bekerja pada bidang (dua dimensi), maka kita menggunakan persamaan 1 dan persamaan 2. Sebaliknya jika gaya-gaya bekerja dalam ruang (tiga dimensi), maka kita menggunakan persamaan 1, 2 dan 3.

Ingat ya, gaya itu besaran vektor (besaran yang punya nilai dan arah). Dengan berpedoman pada koordinat kartesius (x, y, z) dan sesuai dengan kesepakatan bersama, jika arah gaya menuju sumbu x negatif (ke kiri) atau sumbu y negatif (ke bawah), maka gaya tersebut bernilai negatif. Kita cukup menulis tanda negatif di depan angka yang menyatakan besar gaya.

Contoh :

Amati gambar di bawah

Keterangan gambar :

F = gaya tarik

Fg = gaya gesek

N = gaya normal

w = gaya berat

m = massa

g = percepatan gravitasi

Benda ini dikatakan berada dalam keadaan diam, karena jumlah semua gaya yang bekerja pada-nya = 0. Sekarang coba kita tinjau setiap gaya yang bekerja pada benda.

Gaya yang bekerja pada komponen horisontal (sumbu x) :

Gaya tarik (F) dan gaya gesek (fg) mempunyai besar yang sama. Arah kedua gaya ini berlawanan. Arah gaya tarik ke kanan atau menuju sumbu x positif (bernilai positif), sebaliknya arah gaya gesekan ke kiri atau menuju sumbu x negatif (bernilai negatif). Karena besar kedua gaya sama (ditandai dengan panjang panah) dan arahnya berlawanan, maka jumlah kedua gaya ini = 0.

Gaya yang bekerja pada komponen vertikal (sumbu y) :

Pada komponen vertikal (sumbu y), terdapat gaya berat (w) dan gaya normal (N). Arah gaya berat tegak lurus menuju pusat bumi atau menuju sumbu y negatif (bernilai negatif), sedangkan arah gaya normal berlawanan dengan arah gaya berat atau menuju sumbu y positif (bernilai positif) . Karena besar kedua gaya ini sama sedangkan arahnya berlawanan maka kedua gaya saling melenyapkan.

Benda pada contoh di atas berada dalam keadaan seimbang alias diam, karena gaya total atau jumlah semua gaya yang bekerja pada benda, baik pada sumbu horisontal maupun sumbu vertikal = 0.

Contoh 2 :

Amati gambar di bawah

Pada benda ini juga bekerja gaya berat dan gaya normal, seperti benda pada contoh 1. Tapi gurumuda tidak menggambar komponen gaya berat dan gaya normal, karena kedua gaya itu saling melenyapkan. Pada kedua sisi benda dikerjakan gaya seperti yang tampak pada gambar. Besar kedua gaya sama, tetapi berlawanan arah. Apakah benda akan tetap dalam keadaaan seimbang alias diam ? tentu saja tidak… benda akan berotasi.

Untuk membantumu memahami hal ini, coba letakkan sebuah buku di atas meja. Selanjutnya, berikan gaya pada kedua sisi buku itu, seperti yang ditunjukkan pada gambar. Ketika kita memberikan gaya pada kedua sisi buku, itu sama saja dengan kita memutar buku. Tentu saja buku akan berputar alias berotasi. Dalam hal ini buku tidak berada dalam keadaan seimbang lagi.

Berdasarkan contoh 2 ini, bisa dikatakan bahwa untuk membuat sebuah benda tetap diam, syarat 1 saja belum cukup. Kita masih membutuhkan syarat tambahan.

Catatan :

Pada contoh 2 di atas, sebenarnya pada benda itu dikerjakan torsi. Torsi = gaya (F) x lengan gaya (l). Panjang lengan gaya (l) diukur dari sumbu rotasi benda tersebut. Dalam hal ini, yang membuat benda berputar adalah torsi total. Jika kita menganggap tidak ada gaya gesekan pada benda di atas, maka torsi total adalah jumlah torsi yang ditimbulkan oleh kedua gaya itu. Arah rotasi benda searah dengan putaran jarum jam, sehingga kedua torsi bernilai negatif (tidak saling melenyapkan).

Syarat Kedua

Dalam dinamika rotasi, kita belajar bahwa jika terdapat torsi total yang bekerja pada sebuah benda (benda dianggap sebagai benda tegar), maka benda akan melakukan gerak rotasi. Dengan demikian, agar benda tidak berotasi (baca : tidak bergerak), maka torsi total harus = 0. Torsi total = jumlah semua torsi yang bekerja pada benda. Secara matematis bisa ditulis sebagai berikut :

Persamaan Hukum II Newton untuk gerak rotasi :

Ketika sebuah benda diam (tidak berotasi), benda tidak punya percepatan sudut (alfa). Karena percepatan sudut = 0, maka persamaan di atas berubah menjadi :

Contoh 1 :

Amati gambar di bawah. Dua benda, masing-masing bermassa m1 dan m2 diletakkan di atas papan jungkat-jungkit (m1 = m2). Lengan gaya untuk gaya berat m1 = l1, sedangkan lengan gaya untuk gaya berat m2 = l2 (l1 = l2). Papan jungkat-jungkit tidak bergerak alias berada dalam keadaan seimbang, karena m1 = m2 dan l1 = l2. Arah rotasi itu sengaja gurumuda gambar, untuk menunjukkan kepada dirimu bahwa jungkat-jungkit juga bisa berotasi.

Gambar di atas disederhanakan sehingga yang kita tinjau hanya komponen gaya, lengan gaya dan torsi yang bekerja pada benda.

Sekarang kita tinjau torsi yang bekerja pada papan jungkat-jungkit di atas. Jika kita menganggap gaya F1 bisa menyebabkan papan jungkat jungkit bergerak ke bawah, maka arah putaran papan (sebelah kiri) berlawanan dengan arah gerakan jarum jam. Karena arah putaran berlawanan dengan jarum jam, maka Torsi 1 (bagian kiri) bernilai positif.

Demikian juga, apabila kita menganggap gaya F2 bisa menyebabkan papan berputar maka arah putaran papan (bagian kanan) searah dengan putaran jarum jam. Karena arah putaran papan searah dengan gerakan jarum jam, maka torsi 2 bernilai negatif. Tanda positif dan negatif ini cuma kesepakatan saja…

Catatan :

Gaya yang diakibatkan oleh benda bermassa pada papan jungkat-jungkit sebenarnya merupakan gaya berat (w). Gurumuda menulis F saja biar dirimu bisa langsung nyambung dengan persamaan torsi.

Torsi 1 dan torsi 2 sudah kita kupas tuntas. Kita oprek persamaan syarat kedua agar benda tetap dalam keadaan seimbang :

Selesai… ini cuma gambaran kasar. Dirimu bisa menggunakan contoh itu untuk mengoprek soal2 lainnya yang berkaitan dengan syarat 2…..

Pusat Massa

Pengantar

Pusat massa ? apalagi ini… he2… Konsep pusat massa berkaitan erat dengan titik berat alias pusat gravitasi yang akan kita pelajari nanti. Karenanya sebelum belajar mengenai titik berat dkk, sebaiknya kita ulas konsep pusat massa terlebih dahulu. Met belajar ya, semoga dirimu tiba dengan selamat di tempat tujuan ;)

Konsep Partikel

Dalam pokok bahasan gerak lurus (GLB, GLBB, Gerak jatuh bebas, Gerak Vertikal), gerak parabola dan gerak melingkar, setiap benda kita anggap sebagai partikel; lebih tepatnya partikel tunggal. Penggunaan istilah partikel ini hanya untuk mempermudah pembahasan mengenai gerakan, di mana suatu benda digambarkan seperti suatu titik. Ketika sebuah benda bergerak, mobil misalnya, bagian depan, bagian samping dan bagian belakang mobil itu mempunyai kecepatan yang sama. Apabila kita menganggap mobil terdiri banyak titik yang tersebar di seluruh bagian mobil itu, maka ketika bergerak, setiap titik yang tersebar di seluruh mobil itu punya kecepatan yang sama. Karenanya tidak ada salahnya jika kita menganggap mobil seperti satu titik, karena gerakan satu titik bisa menggambarkan gerakan keseluruhan mobil.

Perlu diketahui bahwa kita memperlakukan benda sebagai partikel tunggal hanya ketika benda-benda itu melakukan gerak translasi (gerak lurus, gerak parabola, gerak melingkar dkk). Jika suatu benda melakukan gerak rotasi, benda tidak bisa kita anggap sebagai partikel karena kasusnya sudah berbeda. Dalam gerak rotasi, benda dianggap sebagai benda tegar (benda terdiri dari banyak partikel, di mana jarak antara setiap partikel yang menyusun benda itu selalu sama). Benda tidak bisa dianggap sebagai partikel karena gerakan satu partikel tidak bisa mewakili keseluruhan gerakan benda. Dalam hal ini, kecepatan setiap bagian benda yang melakukan gerak rotasi berbeda-beda.

Pusat Massa

Dalam penjelasan sebelumnya, gurumuda mengatakan bahwa setiap benda dianggap sebagai partikel apabila benda-benda itu melakukan gerak translasi. Sebaliknya, benda-benda yang melakukan gerak rotasi dianggap sebagai benda tegar, bukan sebagai partikel. Walaupun demikian, ketika sebuah benda berotasi atau melakukan gerak umum (mengenai gerak umum akan dijelaskan kemudian. Tuh di bawah), terdapat satu bagian pada benda itu (bisa kita sebut sebagai partikel atau titik) yang bergerak seperti sebuah partikel tunggal dalam gerak translasi. Titik ini dikenal dengan julukan pusat massa. Untuk memudahkan pemahamanmu, gurumuda menggunakan contoh…

Contoh Gerak Umum 1 :

Ini merupakan salah satu contoh gerak umum. Gerak umum itu suatu jenis gerakan di mana benda tidak melakukan gerak translasi murni. Dengan kata lain, tidak semua bagian benda bergerak melalui lintasan yang sama. Perhatikan gambar gerakan tongkat di bawah. Tongkat melakukan gerak rotasi sepanjang arah horisontal (ke kanan). Ketika berotasi, posisi tongkat selalu berubah-ubah. Walaupun demikian, terdapat satu bagian tongkat yang bergerak sepanjang lintasan lurus yang diberi garis putus-putus. Bagian tongkat itu gurumuda tandai dengan titik hitam. Bagian tongkat yang diberi tanda titik hitam itu adalah pusat massa tongkat.

Contoh Gerak Umum 2 :

Tongkat dilempar ke atas dan gerakannya hanya dipengaruhi oleh gravitasi. Walaupun posisi tongkat berubah-ubah (gerakan tongkat kacau balau :D), terdapat satu bagian tongkat (titik hitam pada tongkat) yang bergerak menempuh lintasan yang sama. Bagian tongkat yang diberi titik hitam itu adalah pusat massa tongkat. Pusat massa tongkat melakukan gerak translasi. Dalam hal ini lintasan pusat massa tongkat berbentuk parabola, mirip seperti lintasan benda (benda dianggap sebagai partikel tunggal) yang melakukan gerak parabola (ingat pokok bahasan gerak parabola)

Contoh Gerak Menggelinding :

Amati gambar di bawah ya… Ini merupakan gambar sebuah benda (gak tahu namanya apa :D), sedang menggelinding (ke kanan). Sepanjang gerakannya, benda tidak tergelincir alias tidak selip. Perhatikan titik A dan B. Ketika benda menggelinding ke kanan, posisi titik A selalu berubah, sedangkan titik B tetap. Titik B merupakan pusat massa benda. Arah lintasannya berupa garis putus-putus. Dalam hal ini titik B (pusat massa) melakukan gerak lurus, sedangkan titik A melakukan gerak rotasi.

Contoh Gerak Lurus :

Ini merupakan contoh sebuah benda yang melakukan gerak lurus. Titik hitam itu mewakili pusat massa benda. Jika bentuk benda beraturan, seperti gambar di bawah, pusat massa-nya terletak tepat di tengah benda itu.

Seperti yang kita lihat pada gambar, ketika benda melakukan gerak lurus, pusat massa benda juga melakukan gerak lurus. Lintasannya ditandai dengan garis putus-putus. Jadi tidak ada salahnya jika setiap benda yang melakukan gerak translasi dianggap sebagai partikel alias titik. Partikel alias titik itu bisa menggambarkan pusat massa benda. Dengan kata lain, ketika kita mengandaikan setiap benda seperti partikel, kita menganggap massa benda seolah-olah terkonsentrasi pada pusat massa-nya. Karenanya analisis kita hanya terbatas pada titik dimana pusat massa benda berada.

Menentukan Posisi Pusat Massa

Pada pembahasan sebelumnya, gurumuda sudah mengantarmu berjalan-jalan bersama pusat massa, kali ini kita mencoba mengoprek persamaan yang akan digunakan untuk menentukan posisi pusat massa benda. Ingat ya, pembahasan mengenai pusat massa gurumuda selipkan di topik keseimbangan benda tegar. Dengan demikian, setiap benda yang kita analisis dianggap sebagai benda tegar. Penjelasan panjang lebar mengenai partikel dkk di atas hanya mau mengantarmu untuk memahami konsep pusat massa benda, sekaligus kita mencoba melihat kembali hubungan antara pusat massa dengan konsep partikel yang kita pakai dalam menggambarkan benda yang melakukan gerakan translasi.

Bentuk benda dalam kehidupan kita beraneka ragam. Ada benda yang bentuknya beraturan, ada juga benda yang bentuknya tidak beraturan. Untuk menentukan posisi pusat massa sebuah benda, mau tidak mau kita harus menggunakan persamaan, tidak bisa pake tebak menebak…

Setiap benda tegar bisa dianggap tersusun dari banyak partikel, di mana jarak antara setiap partikel selalu sama. Walaupun demikian, untuk membantu kita menurunkan persamaan pusat massa, kita membuat penyederhanaan, dengan menganggap benda tegar hanya terdiri dari dua partikel. Kita bisa menyebut kedua partikel ini sebagai sistem benda tegar. Untuk lebih mempermudah lagi, kita menggunakan bantuan sistem koordinat. Harap dimaklumi.. fisika itu banyak keanehannya :DAmati gambar di bawah.

m1 = massa partikel 1, m2 = massa partikel 2. Kedua partikel berada pada sumbu x. Partikel 1 berjarak x1 dari sumbu y dan partikel 2 berjarak x2 dari sumbu y. Pusat massa bisa kita singkat PM. Karena kedua partikel terletak pada sumbu x, maka pusat massa untuk kedua partikel itu bisa ditulis xPM. Sekarang mari kita oprek persamaan pusat massa :

M = m1 + m2 = Massa total kedua partikel. Pusat massa terletak di antara kedua partikel itu.

Jika m1 = m2 = m, maka pusat massa tepat berada di tengah-tengah kedua partikel. Secara matematis, persamaannya bisa dioprek seperti ini :

m1 = m2 = m

Jika m1 > m2 maka letak pusat massa lebih dekat dengan m1. Sebaliknya jika m2 > m1 maka letak pusat massa lebih dekat dengan m2. Persamaan di atas hanya berlaku untuk satu dimensi, di mana benda hanya berada pada salah satu sumbu koordinat (sumbu x)

Apabila kedua partikel tersebar dalam 2 dimensi, maka kita bisa mengoprek persamaan pusat massa untuk koordinat y

Persamaan untuk koordinat y

M = m1 + m2 = Massa total kedua partikel

Penurunan persamaan di atas baru terbatas pada 2 partikel. Jika terdapat banyak partikel, maka kita bisa memperluas persamaannya…

Persamaan untuk koordinat x :

Persamaan untuk koordinat y :

Persamaan untuk koordinat z :

Jika partikel2 terletak sebidang (dua dimensi), maka pusat massanya berada di antara xPM dan yPM. Sebaliknya, jika partikel2 terletak dalam ruang (tiga dimensi), maka pusat massanya berada di antara xPM, yPM dan zPM.

Titik Berat alias Pusat Gravitasi

Pengantar

Sebelumnya kita sudah mempelajari konsep pusat massa dan mengoprek persamaan untuk menentukan posisi pusat massa suatu benda. Kali ini kita akan berkenalan dan jalan-jalan bersama titik berat alias pusat gravitasi. Konsep titik berat ini hampir sama dengan pusat massa. Karenanya gurumuda sengaja mengulas pusat massa terlebih dahulu, sebelum membahas titik berat. Sebelum mempelajari titik berat, alangkah baiknya jika kita pahami kembali konsep benda tegar dan gaya gravitasi yang bekerja pada suatu benda tegar. Met belajar ya…. bingung mau nulis apa, soalnya topiknya juga agak serius

Konsep Benda Tegar

Sebelum melangkah lebih jauh, terlebih dahulu gurumuda bahas kembali konsep benda tegar. Tujuannya biar dirimu lebih nyambung dengan penjelasan mengenai titik berat.

Dalam ilmu fisika, setiap benda bisa kita anggap sebagai benda tegar (benda kaku). Benda tegar itu cuma bentuk ideal yang membantu kita menggambarkan sebuah benda. Bagaimanapun setiap benda dalam kehidupan kita bisa berubah bentuk (tidak selalu tegar/kaku), jika pada benda tersebut dikenai gaya yang besar. Setiap benda tegar dianggap terdiri dari banyak partikel alias titik. Partikel2 itu tersebar di seluruh bagian benda. Jarak antara setiap partikel yang tersebar di seluruh bagian benda selalu sama.

Untuk membantumu lebih memahami konsep benda tegar, gurumuda menggunakan ilustrasi saja. Amati gambar di bawah…..

Ini gambar sebuah benda (cuma contoh). Benda ini bisa kita anggap tersusun dari banyak partikel. Pada gambar, partikel2 ditandai dengan titik hitam. Seharusnya semua bagian benda itu dipenuhi dengan titik hitam, tapi nanti malah gambarnya jadi hitam semua. Maksud gurumuda adalah menunjukkan partikel2 alias titik2.

Titik Berat

Salah satu gaya yang bekerja pada setiap benda yang terletak di permukaan bumi adalah gaya gravitasi. Gaya gravitasi yang bekerja pada suatu benda di sebut gaya berat (w). Untuk benda yang mempunyai ukuran (bukan titik. kalau titik tidak punya ukuran), gaya gravitasi yang bekerja pada benda tersebut sebenarnya bukan cuma satu. Sebagaimana yang telah gurumuda jelaskan di atas, setiap benda bisa kita anggap terdiri dari banyak partikel alias banyak titik. Gaya gravitasi sebenarnya bekerja pada tiap-tiap partikel yang menyusun benda itu. Perhatikan gambar di bawah ….

Benda ini kita anggap terdiri dari partikel-partikel. Partikel2 itu diwakili oleh titik hitam. Tanda panah yang berwarna biru menunjukkan arah gaya gravitasi yang bekerja pada tiap2 partikel. Seandainya benda kita bagi menjadi potongan2 yang sangat kecil, maka satu potongan kecil itu = satu partikel. Jumlah partikel sangat banyak dan masing-masing partikel itu juga punya massa. Secara matematis bisa ditulis sebagai berikut :

m1 = partikel 1, m2 = partikel 2, m3 = partikel 3, m4 = partikel 4, m5 = partikel 5, ……, mn = partikel terakhir. Jumlah partikel sangat banyak, lagian kita juga tidak tahu secara pasti ada berapa jumlah partikel. Untuk mempermudah, maka kita cukup menulis titik2 (….) dan n. Simbol n melambangkan partikel yang terakhir.

Gaya gravitasi bekerja pada masing-masing partikel itu. Secara matematis bisa kita tulis sebagai berikut :

Gaya gravitasi yang bekerja pada partikel = gaya berat partikel

m1g = w1 = gaya gravitasi yang bekerja pada partikel 1

m2g = w2 = gaya gravitasi yang bekerja pada partikel 2

m3g = w3 = gaya gravitasi yang bekerja pada partikel 3

m4g = w4 = gaya gravitasi yang bekerja pada partikel 4

m5g = w5 = gaya gravitasi yang bekerja pada partikel 5

Dan seterusnya………………….

Mng = wn = gaya gravitasi yang bekerja pada partikel terakhir

Apabila benda berada pada tempat di mana nilai percepatan gravitasi (g) sama, maka gaya berat untuk setiap partikel bernilai sama. Arah gaya berat setiap partikel juga sejajar menuju ke permukaan bumi. Untuk mudahnya bandingkan dengan gambar di atas. Untuk kasus seperti ini, kita bisa menggantikan gaya berat pada masing-masing partikel dengan sebuah gaya berat tunggal (w = mg) yang bekerja pada titik di mana pusat massa benda berada. Jadi gaya berat ini mewakili semua gaya berat partikel. Titik di mana gaya berat bekerja (dalam hal ini pusat massa benda), di sebut titik berat. Nama lain dari titik berat adalah pusat gravitasi.

Keterangan :

w = gaya berat = gaya gravitasi yang bekerja pada benda

m = massa benda

g = percepatan gravitasi

Bentuk benda simetris, sehingga pusat massa dengan mudah ditentukan. Pusat massa untuk benda di atas tepat berada di tengah-tengah. Jika bentuk benda tidak simetris atau tidak beraturan, maka pusat massa benda bisa ditentukan menggunakan persamaan (persamaan untuk menentukan pusat massa benda ada di pokok bahasan pusat massa).

Jika benda berada pada tempat yang memiliki nilai percepatan gravitasi (g) yang sama, maka gaya gravitasi bisa dianggap bekerja pada pusat massa benda itu. Untuk kasus seperti ini, titik berat benda berada pada pusat massa benda.

Perlu diketahui bahwa penentuan titik berat benda juga perlu memperhatikan syarat-syarat keseimbangan. Untuk kasus di atas, titik berat benda harus terletak pada pusat massa benda, agar syarat 1 terpenuhi

Syarat 2 mengatakan bahwa sebuah benda berada dalam keseimbangan statis jika tumlah semua torsi yang bekerja pada benda = 0. Ketika titik berat berada pada pusat massa, lengan gaya = 0. Karena lengan gaya nol, maka tidak ada torsi yang dihasilkan oleh gaya berat (Torsi = gaya x lengan gaya = gaya berat x 0 = 0 ). Syarat 2 terpenuhi.

Titik berat benda

untuk tempat yang memiliki percepatan gravitasi (g) yang berbeda

Pada pembahasan sebelumnya, kita menganggap titik berat benda terletak pada pusat massa benda tersebut. Hal ini hanya berlaku jika benda berada di tempat yang memiliki percepatan gravitasi (g) yang sama. Benda yang berukuran kecil bisa memenuhi kondisi ini, tetapi benda yang berukuran besar tidak. Demikian juga benda yang diletakkan miring (lihat contoh di bawah).

Bagaimanapun, percepatan gravitasi (g) ditentukan oleh jarak dari pusat bumi. Bagian benda yang lebih dekat dengan permukaan tanah (maksudnya lebih dekat dengan pusat bumi), memiliki g yang lebih besar dibandingkan dengan benda yang jaraknya lebih jauh dari pusat bumi. Untuk memahami hal ini, amati ilustrasi di bawah….

Sebuah balok kayu diletakkan miring. Kita bisa menganggap balok kayu tersusun dari potongan-potongan yang sangat kecil. Potongan2 balok yang sangat kecil ini bisa disebut sebagai partikel alias titik. Massa setiap partikel penyusun balok sama. Bentuk balok simetris sehingga kita bisa menentukan pusat massanya dengan mudah. Pusat massa terletak di tengah-tengah balok (lihat gambar di atas).

Karena semakin dekat dengan pusat bumi, semakin besar percepatan gravitasi, maka partikel penyusun balok yang berada lebih dekat dengan permukaan tanah memiliki g yang lebih besar. Sebaliknya, partikel yang berada lebih jauh dari permukaan tanah memiliki g lebih kecil. Pada gambar di atas, partikel 1 yang bermassa m1 memiliki g lebih besar, sedangkan partikel terakhir yang bermassa mn memiliki g yang lebih kecil. Huruf n merupakan simbol partikel terakhir. Jumlah partikel sangat banyak dan kita juga tidak tahu secara pasti berapa jumlah partikel, sehingga cukup disimbolkan dengan huruf n. Lebih praktis…

Karena partikel yang bermassa m1 memiliki g lebih besar, maka gaya berat yang bekerja padanya lebih besar dibandingkan dengan partikel terakhir. Jika kita amati bagian balok, dari m1, hingga mn, tampak bahwa semakin ke atas, jarak bagian balok2 itu dari permukaan tanah semakin jauh. Tentu saja hal ini mempengaruhi nilai g pada masing-masing partikel penyusun balok tersebut. karena massa partikel sama, maka yang menentukan besar gaya berat adalah percepatan gravitasi (g). semakin ke atas, gaya berat (w) setiap partikel semakin kecil.

Bagaimana-kah titik berat balok di atas ? Titik berat alias pusat gravitasi balok tidak tepat berada pada pusat massanya. Titik berat berada di bawah pusat massa balok. Hal ini disebabkan karena gaya berat partikel2 yang berada di sebelah bawah pusat massa balok (partikel2 yang lebih dekat dengan permukaan tanah) lebih besar daripada gaya berat partikel2 yang ada di sebelah atas pusat massa (partikel2 yang lebih jauh dari permukaan tanah)..

Btw, hampir semua benda yang kita pelajari berukuran kecil sehingga kita tetap menganggap titik berat benda berhimpit dengan pusat massa. Memang jarak antara setiap partikel dari pusat bumi (dari permukaan tanah), berbeda-beda. Tapi karena perbedaan jarak itu sangat kecil, maka perbedaan percepatan gravitasi (g) untuk setiap partikel tidak terlalu besar. Karenanya, perbedaan percepatan gravitasi bisa diabaikan. Kita tetap menganggap setiap bagian benda memiliki percepatan gravitasi yang sama.